Affective Metacognitive Scaffolding and Enriched User Modelling for Experiential Training Simulators: A Follow-Up Study

  • Gudrun Wesiak
  • Adam Moore
  • Christina M. Steiner
  • Claudia Hauff
  • Conor Gaffney
  • Declan Dagger
  • Dietrich Albert
  • Fionn Kelly
  • Gary Donohoe
  • Gordon Power
  • Owen Conlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8095)

Abstract

The ImREAL project is researching how to meaningfully augment and extend existing experiential training simulators. The services developed support self-regulated, goal-, and application-oriented learning in adult training. We present results from a study evaluating a medical interview training simulator that has been augmented by an affective metacognitive scaffolding service and by user modelling exploiting social digital traces. Data from 152 medical students participating in this user trial were compared to the results of a prior trial on an earlier technology version. Findings show that students perceived the learning simulator positively and that the enhanced simulator led to increased feelings of success, less frustration, higher technical flow, and more reflection on learning. Interestingly, this cohort of users proved reluctant to provide their open social IDs to enrich their user models.

Keywords

training simulator self-regulated learning affective metacognitive scaffolding user modelling social digital traces evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knowles, M.: Andragogy in action. Jossey-Bass, San Francisco (1984)Google Scholar
  2. 2.
    Swartout, W.: Lessons learned from virtual humans. AI Magazine 31, 9–20 (2010)Google Scholar
  3. 3.
    Hetzner, S., Steiner, C., Dimitrova, V., Brna, P., Conlan, O.: Adult self-regulated learning through linking experience in simulated and real world: A holistic approach. In: Kloos, C.D., Gillet, D., Garcia, R.M.C., Wild, F., Wolpers, M. (eds.) EC-TEL 2011. LNCS, vol. 6964, pp. 166–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Zimmerman, B.J.: A social cognitive view of self-regulated academic learning. Journal of Educational Psychology 81, 329–339 (1989)CrossRefGoogle Scholar
  5. 5.
    Flavell, J.H.: Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist 34, 906–911 (1979)CrossRefGoogle Scholar
  6. 6.
    Azevedo, R., Hadwin, A.F.: Scaffolding self-regulated learning and metacognition – Implications for the design of computer-based scaffolds. Instructional Science 33, 367–379 (2005)CrossRefGoogle Scholar
  7. 7.
    Moore, A., Hetzner, S., Pannese, L., Steiner, C., Brna, P., Conlan, O.: Affective metacognitive scaffolding for the enhancement of experiential training for adult learners. In: Workshop on Awareness and Reflection in Learning Networks (ARNets11), EC-TEL 2011, Palermo, Italy (2011)Google Scholar
  8. 8.
    Berthold, M., Moore, A., Steiner, C.M., Gaffney, C., Dagger, D., Albert, D., Kelly, F., Donohoe, G., Power, G., Conlan, O.: An initial evaluation of metacognitive scaffolding for experiential training simulators. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D., Hernández-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 23–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Macarthur, V., Moore, A., Mulwa, C., Conlan, O.: Towards a cognitive model to support self-reflection: Emulating traits and tasks in higher order schemata. In: Workshop on Augmenting the Learning Experience with Collaborative Reflection, EC-TEL 2011, Palermo, Italy (2011)Google Scholar
  10. 10.
    Schraw, G., Sperling Dennison, R.: Assessing metacognitive awareness. Contemporary Educational Psychology 19, 460–475 (1994)CrossRefGoogle Scholar
  11. 11.
    Pekrun, R.: The impact of emotions on learning and achievement: towards a theory of cognitive/motivational mediators. Applied Psychology 41, 359–376 (1992)CrossRefGoogle Scholar
  12. 12.
    Moore, A., Ascolese, A.: Explicit tools for affective indicators. In: Workshop on Augmenting the Learning Experience with Collaborative Reflection, EC-TEL 2011, Palermo, Italy (2011)Google Scholar
  13. 13.
    Hauff, C., Houben, G.-J.: Placing images on the world map: A microblog-based enrichment approach. In: SIGIR 2012, pp. 691–700 (2012)Google Scholar
  14. 14.
    Hauff, C., Houben, G.-J.: Deriving knowledge profiles from twitter. In: Kloos, C.D., Gillet, D., Garcia, R.M.C., Wild, F., Wolpers, M. (eds.) EC-TEL 2011. LNCS, vol. 6964, pp. 139–152. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Tao, K., Abel, F., Gao, Q., Houben, G.-J.: TUMS: Twitter-based user modeling service. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 269–283. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Gao, Q., Abel, F., Houben, G.-J., Yu, Y.: A Comparative Study of Users’ Microblogging Behavior on Sina Weibo and Twitter. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 88–101. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Abel, A., Celik, I., Hauff, C., Hollink, L., Houben, G.-J.: U-Sem: Semantic enrichment, user modeling and mining of usage data on the social web. In: International Workshop on Usage Analysis and the Web of Data, USEWOD 2011 (2011)Google Scholar
  18. 18.
    Fill Giordano, R., Litzenberger, M., Berthold, M.: On the Assessment of strategies in self-regulated learning (SRL) – Differences in adolescents of different age group and school type. Poster Presented at the 9. Tagung der Österreichischen Gesellschaft für Psychologie, Salzburg, April 8-10 (2010)Google Scholar
  19. 19.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In: Hancock, N.M.P.A. (ed.) Human Mental Workload, pp. 239–250. North Holland Press, Amsterdam (1988)Google Scholar
  20. 20.
    Rheinberg, F., Vollmeyer, R., Engeser, S.: Die Erfassung des Flow-Erlebens [The assessment of flow]. In: Stiensmeier-Pelster, J., Rheinberg, F. (eds.) Diagnostik von Motivation und Selbstkonzept, pp. 261–279. Hogrefe, Göttingen (2003)Google Scholar
  21. 21.
    Nicolescu, A.B., Lulow, L.L., Ogden, C.A., Le-Niculescu, H., Salomon, D.R., Schork, N.J., Caligiuri, M.P., Lohr, J.B.: PhenoChipping of psychotic disorders: A novel approach for deconstructing and quantitating psychiatric phenotypes. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 141B, 653–662 (2006)Google Scholar
  22. 22.
    Moore, A., Gaffney, C., Dagger, D., Kelly, F., Donohoe, G., Power, G., Conlan, O.: Preliminary content analysis of reflections from experiential training simulator support. In: Workshop on Self-Regulated Learning in Educational Technologies (SRL@ET), ITS 2012. Chania, Greece (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gudrun Wesiak
    • 1
    • 2
  • Adam Moore
    • 3
  • Christina M. Steiner
    • 1
  • Claudia Hauff
    • 4
  • Conor Gaffney
    • 5
  • Declan Dagger
    • 5
  • Dietrich Albert
    • 1
    • 2
  • Fionn Kelly
    • 6
  • Gary Donohoe
    • 6
  • Gordon Power
    • 5
  • Owen Conlan
    • 3
  1. 1.Knowledge Technologies InstituteGraz University of TechnologyAustria
  2. 2.Department of PsychologyUniversity of GrazAustria
  3. 3.KDEG, School of Computer Science and StatisticsTrinity CollegeDublinIreland
  4. 4.Delft University of TechnologyThe Netherlands
  5. 5.EmpowerTheUser, Trinity Technology & Enterprise CampusDublinIreland
  6. 6.Department of Psychiatry, School of MedicineTrinity CollegeDublinIreland

Personalised recommendations