Usage Context-Boosted Filtering for Recommender Systems in TEL

  • Katja Niemann
  • Martin Wolpers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8095)

Abstract

In this paper, we introduce a new way of detecting semantic similarities between learning objects by analysing their usage in web portals. Our approach does not rely on the content of the learning objects or on the relations between users and learning objects but on the usage-based relations between the objects themselves. We take this new semantic similarity measure to enhance existing recommendation approaches for use in technology enhanced learning.

Keywords

item similarity recommender systems usage context 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems in technology enhanced learning. In: Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 387–415. Springer (2010)Google Scholar
  2. 2.
    Verbert, K., Drachsler, H., N.M.: Dataset-driven research for improving tel recommender systems. In: 1st ACM International Conference on Learning Analytics and Knowledge, pp. 44–53 (2011)Google Scholar
  3. 3.
    Meteren, R.V., Someren, M.V.: Using content-based filtering for recommendation. In: Proceedings of MLnet/ECML2000 Workshop (2000)Google Scholar
  4. 4.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill and webert: Identifying interesting web sites. In: Proceedings of Thirteenth National Conference on Artificial Intelligence, AAAI 1996, pp. 54–61 (1996)Google Scholar
  5. 5.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295 (2001)Google Scholar
  6. 6.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations - item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)Google Scholar
  7. 7.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  8. 8.
    Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD Cup and Workshop (2007)Google Scholar
  9. 9.
    Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 251–258. ACM (2008)Google Scholar
  10. 10.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Tran, T., Cohen, R.: Hybrid recommender systems for electronic commerce. In: Knowledge-Based Electronic Markets, AAAI Workshop, pp. 78–83. AAAI Press (2000)Google Scholar
  13. 13.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), Edmonton, Alberta, pp. 187–192 (2002)Google Scholar
  14. 14.
    de Saussure, F.: Course in General Linguistics. Open Court Publishing, Chicago (re-print 1986)Google Scholar
  15. 15.
    Heyer, G., Quasthoff, U., Wittig, T.: Text Mining: Wissensrohstoff Text. Konzepte, Algorithmen, Ergebnisse. W3L-Verlag, Herdecke (2006)Google Scholar
  16. 16.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  17. 17.
    Evert, S.: The Statistics of Word Cooccurrences: Word Pairs and Collocations (Dissertation). University Stuttgart (2004)Google Scholar
  18. 18.
    DeGroot, M.H., Schervish, M.J.: Probability and Statistics, 3rd edn. Addison-Wesley, Boston (2002)Google Scholar
  19. 19.
    Dunning, T.E.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993)Google Scholar
  20. 20.
    Evert, S.: Corpora and collocations. In: Corpus Linguistics. An International Handbook, vol. 2, pp. 223–233. De Gruyter, Berlin (2009)Google Scholar
  21. 21.
    Stefaner, M., Dalla Vecchia, E., Condotta, M., Wolpers, M., Specht, M., Apelt, S., Duval, E.: MACE – enriching architectural learning objects for experience multiplication. In: Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp. 322–336. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Schmitz, H.C., Wolpers, M., Kirschenmann, U., Niemann, K.: Contextualized attention metadata. In: Roda, C. (ed.) Human Attention in Digital Environments. Cambridge University Press (2011)Google Scholar
  23. 23.
    Vuorikari, R., Massart, D.: Datatel challenge: European schoolnet’s travel well dataset. In: 1st Workshop on Recommender Systems for Technology Enhanced Learning, RecSysTEL (2010)Google Scholar
  24. 24.
    Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  25. 25.
    Pearson, K.: On further methods of determining correlation. Cambridge University Press (1907)Google Scholar
  26. 26.
    Bortz, J.: Statistics. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Lee, J., Sun, M., Lebanon, G.: A Comparative Study of Collaborative Filtering Algorithms. ArXiv e-prints (May 2012)Google Scholar
  28. 28.
    Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: A free recommender system library. In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katja Niemann
    • 1
  • Martin Wolpers
    • 1
  1. 1.Schloss BirlinghovenFraunhofer Institute for Applied Information Technology FITSankt AugustinGermany

Personalised recommendations