Abstract
We propose a novel two-layer level set approach for segmentation of the left ventricle (LV) from cardiac magnetic resonance (CMR) short-axis images. In our method, endocardium and epicardium are represented by two specified level contours of a level set function. Segmentation of the LV is formulated as a problem of optimizing the level set function such that these two level contours best fit the epicardium and endocardium. More importantly, a distance regularization (DR) constraint on the level contours is introduced to preserve smoothly varying distance between them. This DR constraint leads to a desirable interaction between the level contours that contributes to maintain the anatomical geometry of the endocardium and epicardium. The negative influence of intensity inhomogeneities on image segmentation are overcome by using a data term derived from a local intensity clustering property. Our method is quantitatively validated by experiments on the datasets for the MICCAI grand challenge on left ventricular segmentation, which demonstrates the advantages of our method in terms of segmentation accuracy and consistency with anatomical geometry.
Chapter PDF
Similar content being viewed by others
Keywords
- Cardiac Magnetic Resonance
- Active Contour Model
- Level Contour
- Intensity Inhomogeneity
- Left Ventricle Mass
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)
Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Elkington, A.G., Mohiaddin, R.H., Rueckert, D.: Segmentation of 4-D cardiac MR images using a probabilistic atlas and the EM algorithm. Med. Image Anal. 8(3), 255–265 (2004)
Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Volumetric layer segmentation using coupled surfaces propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 708–715 (1998)
Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int. J. Comput. Vis. 50(3), 345–362 (2002)
Lynch, M., Ghita, O., Whelan, P.F.: Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput. Med. Imaging Graph. 30(4), 255–262 (2006)
Chung, G., Vese, L.A.: Energy minimization based segmentation and denoising using a multilayer level set approach. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 439–455. Springer, Heidelberg (2005)
Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Processing 19(12), 3243–3254 (2010)
Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Processing 17(10), 1940–1949 (2008)
Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 430–436 (2005)
Jolly, M.P.: Fully automatic left ventricle segmentation incardiac cine MR images using registration and minimum surfaces. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Lu, Y., Radau, P., Connelly, K., Dick, A., Wright, G.: Automatic image-driven segmentation of left ventricle in cardiac cine MRI. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Wijnhout, J., Hendriksen, D., Assen, H.V., der Geest, R.V.: LV challenge LKEB contribution: fully automated myocardial contour detection. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Constantinides, C., Chenoune, Y., Kachenoura, N., Roullot, E., Mousseaux, E., Herment, A., Frouin, F.: Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Huang, S., Liu, J., Lee, L.C., Venkatesh, S.K., Teo, L.L.S., Au, C., Nowinski, W.L.: Segmentation of the left ventricle from cine MR images using a comprehensive approach. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Marák, L., Cousty, J., Najman, L., Talbot, H.: 4D morphological segmentation and the MICCAI LV-Segmentation grand challenge. The MIDAS Journal - Cardia MR Left Ventricle Segmentation Challenge (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, C., Li, C., Zhao, D., Davatzikos, C., Litt, H. (2013). Segmentation of the Left Ventricle Using Distance Regularized Two-Layer Level Set Approach. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40811-3_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-40811-3_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40810-6
Online ISBN: 978-3-642-40811-3
eBook Packages: Computer ScienceComputer Science (R0)