Attenuation Correction Synthesis for Hybrid PET-MR Scanners

  • Ninon Burgos
  • Manuel Jorge Cardoso
  • Marc Modat
  • Stefano Pedemonte
  • John Dickson
  • Anna Barnes
  • John S. Duncan
  • David Atkinson
  • Simon R. Arridge
  • Brian F. Hutton
  • Sebastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8149)

Abstract

The combination of functional and anatomical imaging technologies such as Positron Emission Tomography (PET) and Computed Tomography (CT) has shown its value in the preclinical and clinical fields. In PET/CT hybrid acquisition systems, CT-derived attenuation maps enable a more accurate PET reconstruction. However, CT provides only very limited soft-tissue contrast and exposes the patient to an additional radiation dose. In comparison, Magnetic Resonance Imaging (MRI) provides good soft-tissue contrast and the ability to study functional activation and tissue microstructures, but does not directly provide patient-specific electron density maps for PET reconstruction.

The aim of the proposed work is to improve PET/MR reconstruction by generating synthetic CTs and attenuation-maps. The synthetic images are generated through a multi-atlas information propagation scheme, locally matching the MRI-derived patient’s morphology to a database of pre-acquired MRI/CT pairs. Results show improvements in CT synthesis and PET reconstruction accuracy when compared to a segmentation method using an Ultrashort-Echo-Time MRI sequence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Schulthess, G.K., Kuhn, F.P., Kaufmann, P., Veit-Haibach, P.: Clinical positron emission tomography/magnetic resonance imaging applications. Seminars in Nuclear Medicine 43(1), 3–10 (2013)CrossRefGoogle Scholar
  2. 2.
    Martinez-Möller, A., Souvatzoglou, M., Delso, G., Bundschuh, R.A., Chefd’hotel, C., Ziegler, S.I., Navab, N., Schwaiger, M., Nekolla, S.G.: Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. Journal of Nuclear Medicine 50(4), 520–526 (2009)CrossRefGoogle Scholar
  3. 3.
    Schleyer, P.J., Schaeffter, T., Marsden, P.K.: The effect of inaccurate bone attenuation coefficient and segmentation on reconstructed PET images. Nuclear Medicine Communications 31(8), 708–716 (2010)CrossRefGoogle Scholar
  4. 4.
    Keereman, V., Fierens, Y., Broux, T., De Deene, Y., Lonneux, M., Vandenberghe, S.: MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. Journal of Nuclear Medicine 51(5), 812–818 (2010)CrossRefGoogle Scholar
  5. 5.
    Berker, Y., Franke, J., Salomon, A., Palmowski, M., Donker, H.C.W., Temur, Y., Izquierdo-Garcia, D., Fayad, Z.A., Kiessling, F., Schulz, V.: MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. JNM 53(5) (2012)Google Scholar
  6. 6.
    Johansson, A., Karlsson, M., Nyholm, T.: CT substitute derived from MRI sequences with ultrashort echo time. Medical Physics 38(5), 2708 (2011)CrossRefGoogle Scholar
  7. 7.
    Schreibmann, E., Nye, J.A., Schuster, D.M., Martin, D.R., Votaw, J., Fox, T.: MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Medical Physics 37(5), 2101 (2010)CrossRefGoogle Scholar
  8. 8.
    Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M., Schölkopf, B., Pichler, B.J.: MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. Journal of Nuclear Medicine 49(11), 1875–1883 (2008)CrossRefGoogle Scholar
  9. 9.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  10. 10.
    Sabuncu, M.R., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. TMI 29(10) (2010)Google Scholar
  11. 11.
    Ourselin, S., Roche, A., Subsol, G.: Reconstructing a 3D structure from serial histological sections. Image and Vision Computing 19(2001), 25–31 (2000)Google Scholar
  12. 12.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98(3), 278–284 (2010)CrossRefGoogle Scholar
  13. 13.
    Yushkevich, P.A., Wang, H., Pluta, J., Das, S.R., Craige, C., Avants, B.B., Weiner, M.W., Mueller, S.: Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. NeuroImage 53(4), 1208–1224 (2010)CrossRefGoogle Scholar
  14. 14.
    Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. CVIU 89(2-3) (2003)Google Scholar
  15. 15.
    Cardoso, M.J., Wolz, R., Modat, M., Fox, N.C., Rueckert, D., Ourselin, S.: Geodesic Information Flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 262–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Burger, C., Goerres, G., Schoenes, S., Buck, A., Lonn, A.H.R., Von Schulthess, G.K.: PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. European Journal of Nuclear Medicine and Molecular Imaging 29(7), 922–927 (2002)CrossRefGoogle Scholar
  17. 17.
    Pedemonte, S., Bousse, A., Erlandsson, K., Modat, M., Arridge, S., Hutton, B.F., Ourselin, S.: GPU accelerated rotation-based emission tomography reconstruction. In: IEEE Nuclear Science Symposuim, pp. 2657–2661 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ninon Burgos
    • 1
  • Manuel Jorge Cardoso
    • 1
    • 2
  • Marc Modat
    • 1
    • 2
  • Stefano Pedemonte
    • 1
  • John Dickson
    • 3
  • Anna Barnes
    • 3
  • John S. Duncan
    • 4
  • David Atkinson
    • 5
  • Simon R. Arridge
    • 1
  • Brian F. Hutton
    • 3
    • 6
  • Sebastien Ourselin
    • 1
    • 2
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.Dementia Research CentreUniversity College LondonLondonUK
  3. 3.Institute of Nuclear MedicineUniversity College LondonLondonUK
  4. 4.Department of Clinical and Experimental EpilepsyUCL IoNLondonUK
  5. 5.Centre for Medical ImagingUniversity College LondonLondonUK
  6. 6.Centre for Medical Radiation PhysicsUniversity of WollongongAustralia

Personalised recommendations