Entity Recognition in Parallel Multi-lingual Biomedical Corpora: The CLEF-ER Laboratory Overview

  • Dietrich Rebholz-Schuhmann
  • Simon Clematide
  • Fabio Rinaldi
  • Senay Kafkas
  • Erik M. van Mulligen
  • Chinh Bui
  • Johannes Hellrich
  • Ian Lewin
  • David Milward
  • Michael Poprat
  • Antonio Jimeno-Yepes
  • Udo Hahn
  • Jan A. Kors
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8138)

Abstract

The identification and normalisation of biomedical entities from the scientific literature has a long tradition and a number of challenges have contributed to the development of reliable solutions. Increasingly patient records are processed to align their content with other biomedical data resources, but this approach requires analysing documents in different languages across Europe [1,2].

The CLEF-ER challenge has been organized by the Mantra project partners to improve entity recognition (ER) in multilingual documents. Several corpora in different languages, i.e. Medline titles, EMEA documents and patent claims, have been prepared to enable ER in parallel documents. The participants have been ask to annotate entity mentions with concept unique identifiers (CUIs) in the documents of their preferred non-English language.

The evaluation determines the number of correctly identified entity mentions against a silver standard (Task A) and the performance measures for the identification of CUIs in the non-English corpora. The participants could make use of the prepared terminological resources for entity normalisation and of the English silver standard corpora (SSCs) as input for concept candidates in the non-English documents.

The participants used different approaches including translation techniques and word or phrase alignments apart from lexical lookup and other text mining techniques. The performances for task A and B was lower for the patent corpus in comparison to Medline titles and EMEA documents. In the patent documents, chemical entities were identified at higher performance, whereas the other two document types cover a higher portion of medical terms. The number of novel terms provided from all corpora is currently under investigation.

Altogether, the CLEF-ER challenge demonstrates the performances of annotation solutions in different languages against an SSC.

Keywords

Europe Turkey Tated Boulder Phen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, A., Gaizauskas, R., Hepple, M., Davis, N., Demetriou, G., Guo, Y., Kola, J.S., Roberts, I., Setzer, A., Tapuria, A., et al.: The CLEF corpus: semantic annotation of clinical text. In: AMIA Annual Symposium Proceedings, vol. 2007, p. 625. American Medical Informatics Association (2007)Google Scholar
  2. 2.
    Lussier, Y.A., Shagina, L., Friedman, C.: Automating icd-9-cm encoding using medical language processing: A feasibility study. In: Proceedings of the AMIA Symposium, p. 1072. American Medical Informatics Association (2000)Google Scholar
  3. 3.
    Catarci, T., Ferro, N., Forner, P., Hiemstra, D., Karlgren, J., Penas, A., Santucci, G., Womser-Hacker, C.: CLEF 2012: information access evaluation meets multilinguality, multimodality, and visual analytics. ACM SIGIR Forum 46, 29–33 (2012)Google Scholar
  4. 4.
    Roda, G., Tait, J., Piroi, F., Zenz, V.: CLEF-IP 2009: retrieval experiments in the Intellectual Property domain. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 385–409. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Krallinger, M., Leitner, F., Rodriguez-Penagos, C., Valencia, A.: Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biology 9(suppl. 2), S4 (2008), http://genomebiology.com/2008/9/S2/S4 CrossRefGoogle Scholar
  6. 6.
    Morgan, A., Lu, Z., Wang, X., Cohen, A., Fluck, J., Ruch, P., Divoli, A., Fundel, K., Leaman, R., Hakenberg, J., Sun, C., Liu, H.H., Torres, R., Krauthammer, M., Lau, W., Liu, H., Hsu, C.N., Schuemie, M., Cohen, K.B., Hirschman, L.: Overview of BioCreative II gene normalization. Genome Biology 9(suppl. 2), S3 (2008), http://genomebiology.com/2008/9/S2/S3 CrossRefGoogle Scholar
  7. 7.
    Cohen, K.B., Demner-Fushman, D., Ananiadou, S., Pestian, J., Tsujii, J., Webber, B. (eds.): Proceedings of the BioNLP 2009 Workshop. Association for Computational Linguistics, Boulder (2009), http://www.aclweb.org/anthology/W09-13 Google Scholar
  8. 8.
    Rebholz-Schuhmann, D., Yepes, A.J., Mulligen, E.M.V., Kang, N., Kors, J., Milward, D., Corbett, P., Buyko, E., Beisswanger, E., Hahn, U.: CALBC silver standard corpus. Journal of Bioinformatics and Computational Biology 8, 163–179 (2010)CrossRefGoogle Scholar
  9. 9.
    Rebholz-Schuhmann, D., Jimeno-Yepes, A., Li, C., Kafkas, S., Lewin, I., Kang, N., Corbett, P., Milward, D., Buyko, E., Beisswanger, E., Hornbostel, K., Kouznetsov, A., Witte, R., Laurila, J., Baker, C., Kuo, C.J., Clematide, S., Rinaldi, F., Farkas, R., Móra, G., Hara, K., Furlong, L., Rautschka, M., Lara Neves, M., Pascual-Montano, A., Wei, Q., Collier, N., Mahbub Chowdhury, M.F., Lavelli, A., Berlanga, R., Morante, R., Van Asch, V., Daelemans, W., Marina, J., van Mulligen, E., Kors, J., Hahn, U.: Assessment of NER solutions against the first and second CALBC Silver Standard Corpus. J. Biomedical Semantics 2(suppl. 5), S11 (2011)Google Scholar
  10. 10.
    Hersh, W., Voorhees, E.: TREC genomics special issue overview. Inf. Retr. Boston 12, 1–15 (2009)CrossRefGoogle Scholar
  11. 11.
    Lu, Z.: PubMed and beyond: a survey of web tools for searching biomedical literature. Database (Oxford), 2011:baq036 (2011)Google Scholar
  12. 12.
    Rebholz-Schuhmann, D., Clematide, S., Rinaldi, F., Kafkas, S., van Mulligen, E.M., Bui, C., Hellrich, J., Lewin, I., Milward, D., Poprat, M., Jimeno-Yepes, A., Hahn, U., Kors, J.A.: Multilingual semantic resources and parallel corpora in the biomedical domain: the CLEF-ER challenge. In: Proceedings CLEF Conference, vol. 2013 (2013)Google Scholar
  13. 13.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004)CrossRefGoogle Scholar
  14. 14.
    Brown, E.G., Wood, L., Wood, S.: The medical dictionary for regulatory activities (MedDRA). Drug Safety 20(2), 109–117 (1999)CrossRefGoogle Scholar
  15. 15.
    Stearns, M.Q., Price, C., Spackman, K.A., Wang, A.Y.: SNOMED clinical terms: overview of the development process and project status. In: Proceedings of the AMIA Symposium, vol. 662, American Medical Informatics Association (2001)Google Scholar
  16. 16.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007)CrossRefGoogle Scholar
  17. 17.
    Lewin, I., Kafkas, S., Rebholz-Schuhmann, D.: Centroids: Gold standards with distributional variations. In: Proceedings of the Language Resources Evaluation Conference, Istanbul, Turkey (2012)Google Scholar
  18. 18.
    Lewin, I., Clematide, S.: Deriving the Mantra Silver Standard. In: Proceedings CLEF Conference, vol.  2013 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dietrich Rebholz-Schuhmann
    • 1
    • 2
  • Simon Clematide
    • 1
  • Fabio Rinaldi
    • 1
  • Senay Kafkas
    • 2
  • Erik M. van Mulligen
    • 3
  • Chinh Bui
    • 3
  • Johannes Hellrich
    • 4
  • Ian Lewin
    • 5
  • David Milward
    • 5
  • Michael Poprat
    • 6
  • Antonio Jimeno-Yepes
    • 7
  • Udo Hahn
    • 4
  • Jan A. Kors
    • 3
  1. 1.Department of Computational LinguisticsUniversity of ZürichSwitzerland
  2. 2.European Bioinformatics InstituteWellcome Trust Genome CampusCambridgeU.K.
  3. 3.Department of Medical InformaticsErasmus University Medical CenterRotterdamThe Netherlands
  4. 4.Jena University Language & Information Engineering (JULIE) LabFriedrich-Schiller-Universität JenaJenaGermany
  5. 5.Linguamatics LtdCambridgeUK
  6. 6.Averbis GmbHFreiburgGermany
  7. 7.Victoria Research LaboratoryNational ICT AustraliaMelbourneAustralia

Personalised recommendations