Skip to main content

Subtopic Mining Based on Head-Modifier Relation and Co-occurrence of Intents Using Web Documents

  • Conference paper
Information Access Evaluation. Multilinguality, Multimodality, and Visualization (CLEF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8138))

Abstract

This paper proposes a method that mines subtopics using the head-modifier relation and co-occurrence of users’ intents from web documents in Japanese. We extracted subtopics using the simple patterns based on the head-modifier relation between the query and its adjacent words, and returned the ranked list of subtopics by the proposed score equation. We re-ranked subtopics according to the intent co-occurrence measure. Our method achieved good performance than the baseline methods and suggested queries from the major web search engine. The results of our method will be useful in various search scenarios, such as query suggestion and result diversification.

This work was supported by the Korea Ministry of Knowledge Economy (MKE) under Grant No.10041807, in part by the National Korea Science and Engineering Foundation (KOSEF) (NRF-2010-0012662).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Song, R., Zhang, M., Sakai, T., Kato, M.P., Liu, Y., Sugimoto, M., Wang, Q., Orii, N.: Overview of the NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 82–105 (2011)

    Google Scholar 

  2. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 407–416 (2000)

    Google Scholar 

  3. Huang, C.-K., Chien, L.-F., Oyang, Y.-J.: Relevant Term Suggestion in Interactive Web Search Based on Contextual Information in Query Session Logs. Journal of the American Society for Information Science and Technology 54, 638–649 (2003)

    Article  Google Scholar 

  4. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query Recommendation Using Query Logs in Search Engines. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating Query Substitutions. In: The 15th International Conference on World Wide Web, pp. 387–396 (2006)

    Google Scholar 

  6. Fujita, S., Machinaga, K., Dupret, G.: Click-graph Modeling for Facet Attribute Estimation of Web Search Queries. In: RIAO 2010 Adaptivity, Personalization and Fusion of Heterogeneous Information, pp. 190–197 (2010)

    Google Scholar 

  7. Fujita, S., Uchiyama, T., Dupret, G., Baeza-Yates, R.: Search Facet Creation from Click Logs. In: SIGIR 2010 Workshop on Query Representation and Understanding, pp. 25–28 (2010)

    Google Scholar 

  8. Dang, V., Croft, W.B.: Query Reformulation Using Anchor Text. In: The 3rd ACM International Conference on Web Search and Data Mining, pp. 41–50 (2010)

    Google Scholar 

  9. Xu, J., Croft, W.B.: Query Expansion Using Local and Global Document Analysis. In: The 19th Annual International ACM SIGIR Conference, pp. 4–11 (1996)

    Google Scholar 

  10. Lam-Adesina, A.M., Jones, G.J.F.: Applying Summarization Techniques for Term Selection in Relevance Feedback. In: The 24th Annual International ACM SIGIR Conference, pp. 1–9 (2001)

    Google Scholar 

  11. Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An Information-Theoretic Approach to Automatic Query Expansion. ACM Transactions on Information Systems 19, 1–27 (2001)

    Article  Google Scholar 

  12. Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to Cluster Web Search Results. In: The 27th Annual International ACM SIGIR Conference, pp. 210–217 (2004)

    Google Scholar 

  13. Sanderson, M.: Ambiguous Queries: Test Collections Need More Sense. In: The 31st Annual International ACM SIGIR Conference, pp. 499–506 (2008)

    Google Scholar 

  14. Song, R., Qi, D., Liu, H., Sakai, T., Nie, J.-Y., Hon, H.-W., Yu, Y.: Constructing a Test Collection with Multi-Intent Queries. In: The 3rd International Workshop on Evaluating Information Access, pp. 51–59 (2010)

    Google Scholar 

  15. Zhang, S., Lu, K., Wang, B.: ICTIR Subtopic Mining System at NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 106–110 (2011)

    Google Scholar 

  16. Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting Query Reformulations for Web Search Result Diversification. In: The 19th International Conference on World Wide Web, pp. 881–890 (2010)

    Google Scholar 

  17. Xue, Y., Chen, F., Zhu, T., Wang, C., Li, Z., Liu, Y., Zhang, M., Jin, Y., Ma, S.: THUIR at NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 123–128 (2011)

    Google Scholar 

  18. Santos, R.L.T., Macdonald, C., Ounis, I.: University of Glasgow at the NTCIR-9 Intent task. In: NTCIR-9 Workshop Meeting, pp. 111–115 (2011)

    Google Scholar 

  19. Jiang, X., Han, X., Sun, L.: ISCAS at Subtopic Mining Task in NTCIR9. In: NTCIR-9 Workshop Meeting, pp. 168–171 (2011)

    Google Scholar 

  20. Han, J., Wang, Q., Orii, N., Dou, Z., Sakai, T., Song, R.: Microsoft Research Asia at the NTCIR-9 Intent Task. In: NTCIR-9 Workshop Meeting, pp. 116–122 (2011)

    Google Scholar 

  21. Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query logs. In: The 34th Annual International ACM SIGIR Conference, pp. 795–804 (2011)

    Google Scholar 

  22. Sakai, T.: NTCIREVAL: A Generic Toolkit for Information Access Evaluation. In: The Forum on Information Technology 2011, vol. 2, pp. 23–30 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, SJ., Lee, JH. (2013). Subtopic Mining Based on Head-Modifier Relation and Co-occurrence of Intents Using Web Documents. In: Forner, P., MĂĽller, H., Paredes, R., Rosso, P., Stein, B. (eds) Information Access Evaluation. Multilinguality, Multimodality, and Visualization. CLEF 2013. Lecture Notes in Computer Science, vol 8138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40802-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40802-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40801-4

  • Online ISBN: 978-3-642-40802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics