Subtopic Mining Based on Head-Modifier Relation and Co-occurrence of Intents Using Web Documents

  • Se-Jong Kim
  • Jong-Hyeok Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8138)

Abstract

This paper proposes a method that mines subtopics using the head-modifier relation and co-occurrence of users’ intents from web documents in Japanese. We extracted subtopics using the simple patterns based on the head-modifier relation between the query and its adjacent words, and returned the ranked list of subtopics by the proposed score equation. We re-ranked subtopics according to the intent co-occurrence measure. Our method achieved good performance than the baseline methods and suggested queries from the major web search engine. The results of our method will be useful in various search scenarios, such as query suggestion and result diversification.

Keywords

search intent subtopic mining diversity pattern head-modifier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Song, R., Zhang, M., Sakai, T., Kato, M.P., Liu, Y., Sugimoto, M., Wang, Q., Orii, N.: Overview of the NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 82–105 (2011)Google Scholar
  2. 2.
    Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 407–416 (2000)Google Scholar
  3. 3.
    Huang, C.-K., Chien, L.-F., Oyang, Y.-J.: Relevant Term Suggestion in Interactive Web Search Based on Contextual Information in Query Session Logs. Journal of the American Society for Information Science and Technology 54, 638–649 (2003)CrossRefGoogle Scholar
  4. 4.
    Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query Recommendation Using Query Logs in Search Engines. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating Query Substitutions. In: The 15th International Conference on World Wide Web, pp. 387–396 (2006)Google Scholar
  6. 6.
    Fujita, S., Machinaga, K., Dupret, G.: Click-graph Modeling for Facet Attribute Estimation of Web Search Queries. In: RIAO 2010 Adaptivity, Personalization and Fusion of Heterogeneous Information, pp. 190–197 (2010)Google Scholar
  7. 7.
    Fujita, S., Uchiyama, T., Dupret, G., Baeza-Yates, R.: Search Facet Creation from Click Logs. In: SIGIR 2010 Workshop on Query Representation and Understanding, pp. 25–28 (2010)Google Scholar
  8. 8.
    Dang, V., Croft, W.B.: Query Reformulation Using Anchor Text. In: The 3rd ACM International Conference on Web Search and Data Mining, pp. 41–50 (2010)Google Scholar
  9. 9.
    Xu, J., Croft, W.B.: Query Expansion Using Local and Global Document Analysis. In: The 19th Annual International ACM SIGIR Conference, pp. 4–11 (1996)Google Scholar
  10. 10.
    Lam-Adesina, A.M., Jones, G.J.F.: Applying Summarization Techniques for Term Selection in Relevance Feedback. In: The 24th Annual International ACM SIGIR Conference, pp. 1–9 (2001)Google Scholar
  11. 11.
    Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An Information-Theoretic Approach to Automatic Query Expansion. ACM Transactions on Information Systems 19, 1–27 (2001)CrossRefGoogle Scholar
  12. 12.
    Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to Cluster Web Search Results. In: The 27th Annual International ACM SIGIR Conference, pp. 210–217 (2004)Google Scholar
  13. 13.
    Sanderson, M.: Ambiguous Queries: Test Collections Need More Sense. In: The 31st Annual International ACM SIGIR Conference, pp. 499–506 (2008)Google Scholar
  14. 14.
    Song, R., Qi, D., Liu, H., Sakai, T., Nie, J.-Y., Hon, H.-W., Yu, Y.: Constructing a Test Collection with Multi-Intent Queries. In: The 3rd International Workshop on Evaluating Information Access, pp. 51–59 (2010)Google Scholar
  15. 15.
    Zhang, S., Lu, K., Wang, B.: ICTIR Subtopic Mining System at NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 106–110 (2011)Google Scholar
  16. 16.
    Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting Query Reformulations for Web Search Result Diversification. In: The 19th International Conference on World Wide Web, pp. 881–890 (2010)Google Scholar
  17. 17.
    Xue, Y., Chen, F., Zhu, T., Wang, C., Li, Z., Liu, Y., Zhang, M., Jin, Y., Ma, S.: THUIR at NTCIR-9 INTENT Task. In: NTCIR-9 Workshop Meeting, pp. 123–128 (2011)Google Scholar
  18. 18.
    Santos, R.L.T., Macdonald, C., Ounis, I.: University of Glasgow at the NTCIR-9 Intent task. In: NTCIR-9 Workshop Meeting, pp. 111–115 (2011)Google Scholar
  19. 19.
    Jiang, X., Han, X., Sun, L.: ISCAS at Subtopic Mining Task in NTCIR9. In: NTCIR-9 Workshop Meeting, pp. 168–171 (2011)Google Scholar
  20. 20.
    Han, J., Wang, Q., Orii, N., Dou, Z., Sakai, T., Song, R.: Microsoft Research Asia at the NTCIR-9 Intent Task. In: NTCIR-9 Workshop Meeting, pp. 116–122 (2011)Google Scholar
  21. 21.
    Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query logs. In: The 34th Annual International ACM SIGIR Conference, pp. 795–804 (2011)Google Scholar
  22. 22.
    Sakai, T.: NTCIREVAL: A Generic Toolkit for Information Access Evaluation. In: The Forum on Information Technology 2011, vol. 2, pp. 23–30 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Se-Jong Kim
    • 1
  • Jong-Hyeok Lee
    • 1
  1. 1.Department of Computer Science and EngineeringPohang University of Science and Technology (POSTECH)Korea

Personalised recommendations