Abstract
An ever-increasing number of personal photos is stored online. This trend can be problematic, because face recognition software can undermine user privacy in unexpected ways. Face de-identification aims to prevent automatic recognition of faces thus improving user privacy, but previous work alters the image in a way that makes them indistinguishable for both computers and humans, which prevents a wide-spread use.
We propose a method for de-identification of images that effectively prevents face recognition software (using the most popular and effective algorithms) from identifying people, but still allows human recognition. We evaluate our method experimentally by adapting the CSU framework and using the FERET database. We show that we are able to achieve strong de-identification while maintaining reasonable image quality.
Keywords
- Face recognition
- anonymity
- de-identification
Chapter PDF
References
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 45–58. Springer, Heidelberg (1996)
Beresford, A.R., Kübler, D., Preibusch, S.: Unwillingness to pay for privacy: A field experiment. IZA Discussion Paper No. 5017 (2010), http://ftp.iza.org/dp5017.pdf
Beveridge, J., She, K.: Fall 2001 update to the CSU PCA versus PCA+LDA comparison (2001), http://www.cs.colostate.edu/evalfacerec/
Beveridge, R., Bolme, D., Teixeira, M., Draper, B.: The CSU face identification evaluation system user’s guide: Version 5.0 (2003), http://www.cs.colostate.edu/evalfacerec/
Bolme, D.S.: Elastic bunch graph matching. Master’s thesis, CSU Computer Science Department (2003)
Bolme, D.S., Beveridge, J.R., Teixeira, M., Draper, B.A.: The CSU face identification evaluation system: Its purpose, features and structure. In: Proc. International Conference on Vision Systems, pp. 304–311 (2003)
Boyle, M., Edwards, C., Greenberg, S.: The effects of filtered video on awareness and privacy. In: Proc. of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW 2000, pp. 1–10. ACM (2000)
Deutsche Welle. Facebook facial recognition raises eyebrows in Germany, EU, http://www.dw-world.de/dw/article/0,,15144128,00.html
Do, T.-T., Kijak, E., Furon, T., Amsaleg, L.: Deluding image recognition in sift-based cbir systems. In: Proc. 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence, pp. 7–12. ACM (2010)
EPIC.org. EPIC files complaint, urges investigation of Facebook’s facial recognition techniques (2011), http://epic.org/2011/06/epic-files-complaint-urges-inv.html
Facebook Announcement: 10 billion photos, http://www.facebook.com/note.php?note_id=30695603919
Facebook Announcement: Making Photo Tagging Easier, http://www.facebook.com/blog.php?post=467145887130
Facebook Inc., http://developers.facebook.com/docs/opengraph/
Flickr Blog: 4 billion photos, http://blog.flickr.net/en/2009/10/12/4000000000/
Gross, R., Sweeney, L.: Towards real-world face de-identification. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, BTAS 2007, pp. 1–8 (2007)
Gross, R., Sweeney, L., de la Torre, F., Baker, S.: Model-based face de-identification. In: Proc. 2006 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006. IEEE Computer Society (2006)
Hudson, S.E., Smith, I.: Techniques for addressing fundamental privacy and disruption tradeoffs in awareness support systems. In: Proc. 1996 ACM Conference on Computer Supported Cooperative Work, CSCW 1996, pp. 248–257. ACM (1996)
Miller, P., Lyle, J.: The effect of distance measures on the recognition rates of PCA and LDA based facial recognition. Tech. rep., Clemson University (2008)
Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognition 33(11), 1771–1782 (2000)
Neustaedter, C., Greenberg, S., Boyle, M.: Blur filtration fails to preserve privacy for home-based video conferencing. ACM Trans. Comput.-Hum. Interact. 13, 1–36 (2006)
New York Times, How privacy vanishes online (2010), http://www.nytimes.com/2010/03/17/technology/17privacy.html
Newton, E., Sweeney, L., Malin, B.: Preserving privacy by de-identifying facial images. Tech. Rep. CMU-CS-03-119, Carnegie Mellon University, School of Computer Science (2003)
Newton, E., Sweeney, L., Malin, B.: Preserving privacy by de-identifying facial images. IEEE Transactions on Knowledge and Data Engineering 17(2), 232–243 (2005)
Okada, K., Steffens, J., Maurer, T., Hong, H., Elagin, E., Neven, H., von der Malsburg, C.: The Bochum/USC face recognition system and how it fared in the FERET phase III test. In: Face Recognition: From Theory to Applications (1998)
Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity – a proposal for terminology. In: Workshop on Design Issues in Anonymity and Unobservability, pp. 1–9 (2000)
Phillips, J.P., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)
Phillips, P., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)
Phillips, P.J., Rauss, P.J., Der, S.Z.: FERET (face recognition technology) recognition algorithm development and test results. Tech. Rep. ARL-TR-995, Army Research Laboratory (1996)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. In: IEEE Symposium on Security and Privacy. IEEE Computer Society (1998)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Teixeira, M.L.: The Bayesian intrapersonal/extrapersonal classifier. Master’s thesis, Colorado State University (2003)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Wiskott, L., Fellous, J.-M., Kruger, N., von der Mals, C.: Malsburg, C. V. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)
Yambor, W., Draper, B., Beveridge, R.: Analyzing PCA-based face recognition algorithms: Eigenvector selection and distance measures. In: Empirical Evaluation Methods in Computer Vision (2002)
Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)
Zhao, Q.A., Stasko, J.T.: Evaluating image filtering based techniques in media space applications. In: Proc. of the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW 1998, pp. 11–18. ACM (1998)
Zhao, W., Krishnaswamy, A., Chellappa, R., Sweets, D., Weng, J.: Discriminant analysis of principal components for face recognition. In: Proc. 3rd IEEE Int. Conference on Face and Gesture Recognition, pp. 336–341 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Driessen, B., Dürmuth, M. (2013). Achieving Anonymity against Major Face Recognition Algorithms. In: De Decker, B., Dittmann, J., Kraetzer, C., Vielhauer, C. (eds) Communications and Multimedia Security. CMS 2013. Lecture Notes in Computer Science, vol 8099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40779-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-40779-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40778-9
Online ISBN: 978-3-642-40779-6
eBook Packages: Computer ScienceComputer Science (R0)