Decentralised Cooperative Agent-Based Clustering in Intelligent Traffic Clouds

  • Jelena Fiosina
  • Maksims Fiosins
  • Jörg P. Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)


Contemporary traffic management systems will become more intelligent with advent of future Internet technologies. The systems are expected to become more simple, effective and comfortable for users, but this transformation will require the development of both new system architectures as well as enhanced processing and mining algorithms for large volumes of cloud data. In this study, we consider a conceptual architecture of a cloud-based traffic management system that applied to a multi-modal journey planning scenario. For this purpose, it is necessary to process large amounts of travel-time information. Information is collected by cloud service providers and processed for future route planning. In this paper, we focus on the data clustering step in the data mining process. The data collection and processing require an appropriate clustering algorithm to aggregate similar data. In particular, we support a process where a particular service provider can request additional information from others to be used in the clustering function, requiring a decentralised clustering algorithm. We present a cloud-based architecture for this scenario, develop a decentralised cooperative kernel-density based clustering algorithm, and evaluate the efficiency of the proposed approach using real-world traffic data from Hanover, Germany.


Cloud computing architecture decentralised data processing and mining multi-agent systems kernel density estimation clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Bazzan, A.L.C., Klügla, F.: A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review FirstView, 1–29 (2013)Google Scholar
  3. 3.
    Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Sym. on Biocomputing, vol. 7, pp. 6–17 (2002)Google Scholar
  4. 4.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Stat. Society. Series B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fiosina, J., Fiosins, M.: Chapter 1: Cooperative regression-based forecasting in distributed traffic networks. In: Memon, Q.A. (ed.) Distributed Network Intelligence, Security and Applications, pp. 3–37. CRC Press, Taylor and Francis Group (2013)Google Scholar
  6. 6.
    Fiosina, J., Fiosins, M., Müller, J.P.: Mining the traffic cloud: Data analysis and optimization strategies for cloud-based cooperative mobility management. In: Casillas, J., Martínez-López, F.J., Vicari, R., De la Prieta, F. (eds.) Management Intelligent Systems. AISC, vol. 220, pp. 25–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Reconciling strategic and tactical decision making in agent-oriented simulation of vehicles in urban traffic. In: ICST Conf. on Simulation Tools and Techniques, SimuTools 2011 (2011)Google Scholar
  8. 8.
    Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer, Heidelberg (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hinneburg, A., Gabriel, H.H.: DENCLUE 2.0: Fast clustering based on kernel density estimation. In: Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The KDEC scheme. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 104–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: A partition-and-group framework. In: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2007), Beijing, pp. 593–604 (2007)Google Scholar
  12. 12.
    Li, Z.J., Chen, C., Wang, K.: Cloud computing for agent-based urban transportation systems. IEEE Int. Systems 26(1), 73–79 (2011)CrossRefGoogle Scholar
  13. 13.
    Ogston, E., Overeinder, B., van Steen, M., Brazier, F.: A method for decentralized clustering in large multi-agent systems. In: Proc. of 2nd Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 789–796 (2003)Google Scholar
  14. 14.
    Talia, D.: Cloud computing and software agents: Towards cloud intelligent services. In: Proc. of the 12th Workshop on Objects and Agents, vol. 741, pp. 2–6 (2011)Google Scholar
  15. 15.
    Weijermars, W., van Berkum, E.: Analyzing highway flow patterns using cluster analysis. In: Proc. of the 8th Int. IEEE Conf. on ITS, Vienna, pp. 831–836 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jelena Fiosina
    • 1
  • Maksims Fiosins
    • 1
  • Jörg P. Müller
    • 1
  1. 1.Institute of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations