Estimating Shapley Values for Fair Profit Distribution in Power Planning Smart Grid Coalitions

  • Jörg Bremer
  • Michael Sonnenschein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8076)

Abstract

In future, highly dynamic energy grids a likely scenario is to have dynamically founded groups of distributed energy resources that are in charge of jointly delivering a demanded load schedule for a certain time horizon. In market based scenarios, such a demanded load schedule would be a (day ahead) product that is to be delivered by a coalition of energy resources. Computational aspects of the underlying optimization problem or of proper coalition formation are already subject to many research efforts. In this paper, we focus on the question of fairly sharing the profit among the members of such a coalition. Distributing the surplus merely based on the absolute (load) contribution does not take into account that smaller units maybe provide the means for fine grained control as they are able to modify their load on a smaller scale. Shapley values provide a concept for the decision on how the generated total surplus of an agent coalition should be spread. In this paper, we propose a scheme for efficiently estimating computationally intractable Shapley values as a prospective base for future surplus distribution schemes for smart grid coalitions and discuss some first ideas on how to use them for smart grid active power product coalitions.

Keywords

Shapley value active power load planning smart grid multi-agent system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market–based self–organized provision of active power and ancillary services. IEEE (June 2012)Google Scholar
  2. 2.
    Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden (2010)Google Scholar
  3. 3.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the shapley value. Artif. Intell. 172(14), 1673–1699 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Mao, Y., Li, M.: Optimal reactive power planning based on simulated annealing particle swarm algorithm considering static voltage stability. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, vol. 1, pp. 106–110. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  5. 5.
    Xiong, W., Li, M.: An improved particle swarm optimization algorithm for unit commitment. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, vol. 1, pp. 21–25. IEEE Computer Society, Washington, DC (2008)Google Scholar
  6. 6.
    Pereira, J., Viana, A., Lucus, B., Matos, M.: A meta-heuristic approach to the unit commitment problem under network constraints. International Journal of Energy Sector Management 2(3), 449–467 (2008)CrossRefGoogle Scholar
  7. 7.
    Guan, X., Zhai, Q., Papalexopoulos, A.: Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming, vol. 2, p. 1100 (2003)Google Scholar
  8. 8.
    Franch, T., Scheidt, M., Stock, G.: Current and future challenges for production planning systems. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M., Pardalos, P.M. (eds.) Optimization in the Energy Industry. Energy Systems, pp. 5–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Tröschel, M., Appelrath, H.-J.: Towards reactive scheduling for large-scale virtual power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 141–152. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gatterbauer, W.: Economic efficiency of decentralized unit commitment from a generator’s perspective. In: Ilic, M. (ed.) Engineering Electricity Services of the Future. Springer (2010)Google Scholar
  11. 11.
    Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents (May 2007)Google Scholar
  12. 12.
    Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., Akkermans, H.: Agent-based electricity balancing with distributed energy resources, a multiperspective case study. In: Hawaii International Conference on System Sciences, p. 173 (2008)Google Scholar
  13. 13.
    Kamper, A., Eßer, A.: Strategies for decentralised balancing power. In: Lewis, A., Mostaghim, S., Randall, M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 261–289. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Mihailescu, R.C., Vasirani, M., Ossowski, S.: Dynamic coalition adaptation for efficient agent-based virtual power plants. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973, pp. 101–112. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based control for decentralised demand side management in the smart grid. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS, pp. 5–12. IFAAMAS (2011)Google Scholar
  16. 16.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press (June 1995)Google Scholar
  17. 17.
    Kahan, J., Rapoport, A.: Theories of coalition formation. Basic Studies in Human Behavior. L. Erlbaum Associates (1984)Google Scholar
  18. 18.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. 1st edn. The MIT Press (July 1994)Google Scholar
  19. 19.
    Hsu, M.C., Soo, V.W.: Fairness in cooperating multi-agent systems – using profit sharing as an example. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 153–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Friedman, E., Moulin, H.: Three methods to share joint costs or surplus. Journal of Economic Theory 87(2), 275–312 (1999)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sen, A.K.: Labour allocation in a cooperative enterprise. The Review of Economic Studies 33(4), 361–371 (1966)CrossRefGoogle Scholar
  22. 22.
    Lima, J., Pereira, M., Pereira, J.: An integrated framework for cost allocation in a multi-owned transmission-system. IEEE Transactions on Power Systems 10(2), 971–977 (1995)CrossRefGoogle Scholar
  23. 23.
    Mas-Colell, A.: Remarks on the game-theoretic analysis of a simple distribution of surplus problem. International Journal of Game Theory 9, 125–140 (1980)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Champsaur, P.: How to share the cost of a public good? International Journal of Game Theory 4, 113–129 (1975)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Saad, W., Han, Z., Poor, H.V., Basar, T.: Game theoretic methods for the smart grid. CoRR abs/1202.0452 (2012)Google Scholar
  26. 26.
    Yen, J., Yan, Y.H., Wang, B.J., Sin, P.K.H., Wu, F.F.: Multi-Agent Coalition Formation in Power Transmission Planning. In: Hawaii International Conference on System Sciences, pp. 433–443 (1998)Google Scholar
  27. 27.
    Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., Jennings, N.: Cooperatives of distributed energy resources for efficient virtual power plants. In: The Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), May 2011, pp. 787–794 (2011) (event dates: May 2-6, 2011)Google Scholar
  28. 28.
    Rapoport, A.: N-person game theory. Concepts and applications. Ann Arbor science library. Univ. of Michigan Pr. (1970)Google Scholar
  29. 29.
    Shapley, L.S.: A value for n-person games. Contributions to the theory of games 2, 307–317 (1953)MathSciNetGoogle Scholar
  30. 30.
    Ma, R., Chiu, D., Lui, J., Misra, V., Rubenstein, D.: Internet economics: the use of shapley value for isp settlement. In: Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT 2007, pp. 6:1–6:12. ACM, New York (2007)Google Scholar
  31. 31.
    Liben-Nowell, D., Sharp, A., Wexler, T., Woods, K.: Computing shapley value in supermodular coalitional games. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 568–579. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theor. Comput. Sci. 263(1-2), 306–310 (2001)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Mann, I., Shapley, L.: Values of large games, iv: Evaluating the electoral college by montecarlo techniques. Technical report, Santa Monica, CA: RAND Corporation (1960)Google Scholar
  36. 36.
    Bachrach, Y., Markakis, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Approximating power indices. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S., eds.: AAMAS (2), IFAAMAS, 943–950 (2008)Google Scholar
  37. 37.
    Owen, G.: Multilinear extension of games. Management Science 18(5–Part–2), 64–79 (1972)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Leech, D.: Computing power indices for large voting games. Management Science 49(6), 831–837 (2003)MATHCrossRefGoogle Scholar
  39. 39.
    Zlotkin, G., Rosenschein, J.S.: Coalition, cryptography, and stability: Mechanisms for coalition formation in task oriented domains. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 32–437. AAAI Press (1994)Google Scholar
  40. 40.
    Bremer, J., Sonnenschein, M.: A distributed greedy algorithm for constraint-based scheduling of energy resources. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS, pp. 1285–1292 (2012)Google Scholar
  41. 41.
    Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft. Comput. 2010, 1–19 (2010)CrossRefGoogle Scholar
  42. 42.
    Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), Paris, France (April 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Bremer
    • 1
  • Michael Sonnenschein
    • 1
  1. 1.Environmental InformaticsUniversity of OldenburgOldenburgGermany

Personalised recommendations