Contextualization and Personalization of Queries to Knowledge Bases Using Spreading Activation

  • Ana B. Pelegrina
  • Maria J. Martin-Bautista
  • Pamela Faber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


Most taxonomies and thesauri offer their users a huge amount of structured data. However, this volume of data is often excessive, and, thus does not fulfill the needs of the users, who are trying to find specific information related to a certain concept. While there are techniques that may partially alleviate this problem (e.g. visual representation of the data), some of the effects of the information overload persist. This paper proposes a four-step mechanism for personalization and knowledge extraction, derived from the information about users’ activities stored in their profiles. More precisely, the system extracts contextualization from the users’ profiles by using a spreading activation algorithm. The preliminary results of this approach are presented in this paper.


Knowledge Base Recommender System Spreading Activation Karstic Region Placer Mine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual semantic network. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 216–225. Association for Computational Linguistics (2010)Google Scholar
  2. 2.
    Auer, S., et al.: Dbpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Fellbaum, C.: Wordnet. In: Theory and Applications of Ontology: Computer Applications, pp. 231–243 (2010)Google Scholar
  4. 4.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: An on-line lexical database*. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  5. 5.
    Reimerink, A., Faber, P.: Ecolexicon: A frame-based knowledge base for the environment. In: Proceedings of the International Conference Towards eEnvironment, pp. 25–27 (2009)Google Scholar
  6. 6.
    Ferragina, P., Gulli, A.: A personalized search engine based on web-snippet hierarchical clustering. Software: Practice and Experience 38(2), 189–225 (2008)CrossRefGoogle Scholar
  7. 7.
    Han, L., Chen, G.: A fuzzy clustering method of construction of ontology-based user profiles. Advances in Engineering Software 40(7), 535–540 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Leung, K.T., Ng, W., Lee, D.L.: Personalized concept-based clustering of search engine queries. IEEE Transactions on Knowledge and Data Engineering 20(11), 1505–1518 (2008)CrossRefGoogle Scholar
  9. 9.
    Widyantoro, D., Yen, J.: Using fuzzy ontology for query refinement in a personalized abstract search engine. In: Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 1, pp. 610–615 (July 2001)Google Scholar
  10. 10.
    Kim, K.J., Cho, S.B.: Personalized mining of web documents using link structures and fuzzy concept networks. Applied Soft Computing 7(1), 398–410 (2007)CrossRefGoogle Scholar
  11. 11.
    Duong, T.H., Uddin, M.N., Li, D., Jo, G.S.: A Collaborative Ontology-Based User Profiles System. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 540–552. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  13. 13.
    Mulvenna, M.D., Anand, S.S., Büchner, A.G.: Personalization on the net using web mining: introduction. Communications of the ACM 43(8), 122–125 (2000)CrossRefGoogle Scholar
  14. 14.
    Jiang, X., Tan, A.H.: Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences 179(16), 2794–2808 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Katifori, A., Vassilakis, C., Dix, A.: Ontologies and the brain: Using spreading activation through ontologies to support personal interaction. Cognitive Systems Research 11(1), 25–41 (2010)CrossRefGoogle Scholar
  16. 16.
    Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior 22(3), 261–295 (1983)CrossRefGoogle Scholar
  17. 17.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82(6), 407 (1975)CrossRefGoogle Scholar
  18. 18.
    Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  19. 19.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artificial Intelligence Review (1997)Google Scholar
  20. 20.
    Alvarez, J.M., Polo, L., Jimenez, W., Abella, P., Labra, J.E.: Application of the spreading activation technique for recommending concepts of well-known ontologies in medical systems. In: Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB 2011, p. 626 (2011)Google Scholar
  21. 21.
    Preece, S.E.: Spreading activation network model for information retrieval. Dissertation Abstracts International Part B: Science and Engineering (Diss. Abst. Int. Pt. B- Sci. & Eng.) 42(9) (1982)Google Scholar
  22. 22.
    Gouws, S., Rooyen, G.J.V., Engelbrecht, H.A.: Measuring conceptual similarity by spreading activation over wikipedia’s hyperlink structure, 46–54 (August 2010)Google Scholar
  23. 23.
    Crestani, F., Lee, P.L.: Searching the web by constrained spreading activation. Information Processing & Management 36(4), 585–605 (2000)CrossRefGoogle Scholar
  24. 24.
    Sieg, A., Mobasher, B., Burke, R.: Ontological User Profiles for Representing Context in Web Search. In: 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, pp. 91–94. IEEE (November 2007)Google Scholar
  25. 25.
    Sieg, A., Mobasher, B., Burke, R.: Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2010, pp. 39–46. ACM Press, New York (2010)CrossRefGoogle Scholar
  26. 26.
    Sieg, A., Mobasher, B., Burke, R.: Ontology-Based Collaborative Recommendation. In: ITWP (2010)Google Scholar
  27. 27.
    Teufl, P., Payer, U., Parycek, P.: Automated analysis of e-participation data by utilizing associative networks, spreading activation and unsupervised learning. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 139–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Collins, C., Carpendale, S.: Vislink: Revealing relationships amongst visualizations. IEEE Transactions on Visualization and Computer Graphics 13(6), 1192–1199 (2007)CrossRefGoogle Scholar
  29. 29.
    Kuß, A., Prohaska, S., Meyer, B., Rybak, J., Hege, H.C.: Ontology-based visualization of hierarchical neuroanatomical structures. In: Proc. Vis. Comp. Biomed., pp. 177–184 (2008)Google Scholar
  30. 30.
    Eyharabide, V., Amandi, A.: Ontology-based user profile learning. Applied Intelligence 36(4), 857–869 (2011)CrossRefGoogle Scholar
  31. 31.
    Martín-Bautista, M.J., Kraft, D.H., Vila, M., Chen, J., Cruz, J.: User profiles and fuzzy logic for web retrieval issues. Soft Computing-A Fusion of Foundations, Methodologies and Applications 6(5), 365–372 (2002)zbMATHGoogle Scholar
  32. 32.
    León Araúz, P., Magaña Redondo, P.: Ecolexicon: contextualizing an environmental ontology. In: Proceedings of the Terminology and Knowledge Engineering (TKE) Conference 2010, pp. 341–355 (2010)Google Scholar
  33. 33.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, pp. 11–15 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana B. Pelegrina
    • 1
  • Maria J. Martin-Bautista
    • 2
  • Pamela Faber
    • 1
  1. 1.Department of Translation and InterpretingUniversity of GranadaSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaSpain

Personalised recommendations