Skip to main content

Heuristic Classifier Chains for Multi-label Classification

  • Conference paper
Flexible Query Answering Systems (FQAS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8132))

Included in the following conference series:


Multi-label classification, in opposite to conventional classification, assumes that each data instance may be associated with more than one labels simultaneously. Multi-label learning methods take advantage of dependencies between labels, but this implies greater learning computational complexity.

The paper considers Classifier Chain multi-label classification method, which in original form is fast, but assumes the order of labels in the chain. This leads to propagation of inference errors down the chain. On the other hand recent Bayes-optimal method, Probabilistic Classifier Chain, overcomes this drawback, but is computationally intractable. In order to find the trade off solution it is presented a novel heuristic approach for finding appropriate label order in chain. It is demonstrated that the method obtains competitive overall accuracy and is also tractable to higher-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kajdanowicz, T., Kazienko, P.: Hybrid repayment prediction for debt portfolio. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 850–857. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  Google Scholar 

  3. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  4. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  5. Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of 1st International Workshop on Learning from Multi-Label Data, MLD 2009, at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 101–116 (2009)

    Google Scholar 

  6. Dembczynski, K., Cheng, W., Hullermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, pp. 279–286. Omnipress (June 2010)

    Google Scholar 

  7. Dembczynski, K., Waegeman, W., Cheng, W., Hullermeier, E.: On label dependence in multi-label classification. In: Workshop Proceedings of Learning from Multi-Label Data, Haifa, Israel, pp. 5–12 (June 2010)

    Google Scholar 

  8. Kajdanowicz, T., Kazienko, P.: Structured output element ordering in boosting-based classification. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 221–228. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Kajdanowicz, T., Kazienko, P.: Learning and inference order in structured output elements classification. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part I. LNCS, vol. 7196, pp. 301–309. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  11. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems. Neural Information Processing Systems, pp. 681–687. MIT Press (2001)

    Google Scholar 

  12. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proceedings of 9th International Conference on Music Information Retrieval, ISMIR 2008, Philadelphia, PA, USA, pp. 325–330 (2008)

    Google Scholar 

  13. Pestian, J., Brew, C., Matykiewicz, P., Hovermale, D., Johnson, N., Bretonnel Cohen, K., Duch, W.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing. Association of Computational Linguistics (2007)

    Google Scholar 

  14. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kajdanowicz, T., Kazienko, P. (2013). Heuristic Classifier Chains for Multi-label Classification. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2013. Lecture Notes in Computer Science(), vol 8132. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40768-0

  • Online ISBN: 978-3-642-40769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics