Advertisement

A Histology-Based Model of Quantitative T1 Contrast for In-vivo Cortical Parcellation of High-Resolution 7 Tesla Brain MR Images

  • Juliane Dinse
  • Miriam Waehnert
  • Christine Lucas Tardif
  • Andreas Schäfer
  • Stefan Geyer
  • Robert Turner
  • Pierre-Louis Bazin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

A conclusive mapping of myeloarchitecture (myelin patterns) onto the cortical sheet and, thus, a corresponding mapping to cytoarchitecture (cell configuration) does not exist today. In this paper we present a generative model which can predict, on the basis of known cytoarchitecture, myeloarchitecture in different primary and non-primary cortical areas, resulting in simulated in-vivo quantitative T1 maps. The predicted patterns can be used in brain parcellation. Our model is validated using a similarity distance metric which enables quantitative comparison of the results with empirical data measured using MRI. The work presented may provide new perspectives for this line of research, both in imaging and in modelling the relationship with myelo- and cytoarchitecture, thus leading the way towards in-vivo histology using MRI.

Keywords

myeloarchitecture cytoarchitetcure ultra-high resolution MRI cortical parcellation 

References

  1. 1.
    Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. JA Barth, Leipzig (1909)Google Scholar
  2. 2.
    Economo, C., Koskinas, G.N.: Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Wien und Berlin (1925)Google Scholar
  3. 3.
    Vogt, C., Vogt, O.: Allgemeinere Ergebnisse unserer Hirnforschung. Erste Mitteilung. Ziele und Wege unserer Hirnforschung. J. Psychol. Neurol. 25 (1919)Google Scholar
  4. 4.
    Nieuwenhuys, R.: The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain. Struct. Funct. 218, 303–352 (2013)CrossRefGoogle Scholar
  5. 5.
    Hellwig, B.: How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt. J. Hirnforsch. 34, 387–402 (1993)MathSciNetGoogle Scholar
  6. 6.
    Wald, L., Fischl, B., Rosen, B.: High-Resolution and Microscopic Imaging at High Field. In: Ultra High Field Magnetic Resonance Imaging, pp. 343–371. Springer, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Geyer, S., Weiss, M., Reimann, K., Lohmann, G., Turner, R.: Microstructural Parcellation of the Human Cerebral Cortex–From Brodmann’s Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging. Front. Hum. Neurosci. 5 (2011)Google Scholar
  8. 8.
    Glasser, M.F., Van Essen, D.C.: Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1-and T2-Weighted MRI. J. Neurosci. 31, 11597 (2011)CrossRefGoogle Scholar
  9. 9.
    Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., Mohlberg, H., Amunts, K., Zilles, K.: Cortical Folding Patterns and Predicting Cytoarchitecture. Cereb. Cortex. 18, 1973–1980 (2008)CrossRefGoogle Scholar
  10. 10.
    Paldino, A.M.: A computerized study of axonal structure in the visual cortex. Syracuse University (1975)Google Scholar
  11. 11.
    Rooney, W.D., Johnson, G., Li, X., Cohen, E.R., Kim, S.G., Ugurbil, K., Springer, C.S.: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn. Reson. Med. 57, 308–318 (2007)CrossRefGoogle Scholar
  12. 12.
    Marques, J.P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.F., Gruetter, R.: MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49, 1271–1281 (2010)CrossRefGoogle Scholar
  13. 13.
    Hurley, A.C., Al-Radaideh, A., Bai, L., Aickelin, U., Coxon, R., Glover, P., Gowland, P.A.: Tailored RF pulse for magnetization inversion at ultra-high field. Magn. Reson. Med. 63, 51–58 (2010)Google Scholar
  14. 14.
    Han, X., Pham, D.L., Tosun, D., Rettmann, M.E., Xu, C., Prince, J.L.: CRUISE: Cortical reconstruction using implicit surface evolution. NeuroImage 23, 997–1012 (2004)CrossRefGoogle Scholar
  15. 15.
    Bok, S.T.: Der Einfluß der in den Furchen und Windungen auftretenden Krümmungen der Großhirnrinde auf die Rindenarchitektur. Arch. Neurol. Psychiatr. 121, 682–750 (1929)Google Scholar
  16. 16.
    Geyer, S., Schleicher, A., Zilles, K.: Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural Organization and Interindividual Variability. NeuroImage 10, 63–83 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juliane Dinse
    • 1
    • 2
  • Miriam Waehnert
    • 1
  • Christine Lucas Tardif
    • 1
  • Andreas Schäfer
    • 1
  • Stefan Geyer
    • 1
  • Robert Turner
    • 1
  • Pierre-Louis Bazin
    • 1
  1. 1.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  2. 2.Faculty of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations