Advertisement

Atlas Construction for Dynamic (4D) PET Using Diffeomorphic Transformations

  • Marie Bieth
  • Hervé Lombaert
  • Andrew J. Reader
  • Kaleem Siddiqi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

A novel dynamic (4D) PET to PET image registration procedure is proposed and applied to multiple PET scans acquired with the high resolution research tomograph (HRRT), the highest resolution human brain PET scanner available in the world. By extending the recent diffeomorphic log-demons (DLD) method and applying it to multiple dynamic [11C]raclopride scans from the HRRT, an important step towards construction of a PET atlas of unprecedented quality for [11C]raclopride imaging of the human brain has been achieved. Accounting for the temporal dimension in PET data improves registration accuracy when compared to registration of 3D to 3D time-averaged PET images. The DLD approach was chosen for its ease in providing both an intensity and shape template, through iterative sequential pair-wise registrations with fast convergence. The proposed method is applicable to any PET radiotracer, providing 4D atlases with useful applications in high accuracy PET data simulations and automated PET image analysis.

Keywords

Target Image Warped Image Medical Image Registration Base Similarity Measure Atlas Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alpert, N., Berdichevsky, D., Levin, Z., Morris, E., Fischman, A.J.: Improved methods for image registration. NeuroImage 3 (1996)Google Scholar
  2. 2.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61 (2005)Google Scholar
  3. 3.
    Collins, D., Neelin, P., Peters, T., Evans, A.: Automatic 3D intersubject registration of MR volumetric data in standardized talairach space. Journal of Computer Assisted Tomography 18 (1994)Google Scholar
  4. 4.
    Guimond, A., Meunier, J., Thirion, J.-P.: Automatic computation of average brain models. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 631–640. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Gunn, R., Lammertsma, A., Hume, S., Cunningham, V.: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6 (1997)Google Scholar
  6. 6.
    Hill, D., Batchelor, P., Holden, M., Hawkes, D.: Medical image registration. PMB 46 (2001)Google Scholar
  7. 7.
    Lammertsma, A., Hume, S.: Simplified reference tissue model for PET receptor studies. Neuroimage 4 (1996)Google Scholar
  8. 8.
    Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. TMI 31 (2012)Google Scholar
  9. 9.
    Peyrat, J.M., Delingette, H., Sermesant, M., Xu, C., Ayache, N.: Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons. TMI 29 (2010)Google Scholar
  10. 10.
    Qin, P., Duncan, N., Wiebking, C., Gravel, P., Lyttelton, O., Hayes, D., et al.: GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation. Frontiers in Human Neuroscience 6 (2012)Google Scholar
  11. 11.
    Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. TMI 21 (2002)Google Scholar
  12. 12.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marie Bieth
    • 1
  • Hervé Lombaert
    • 1
  • Andrew J. Reader
    • 2
  • Kaleem Siddiqi
    • 1
  1. 1.School of Computer Science and Centre for Intelligent MachinesMcGill UniversityCanada
  2. 2.Montreal Neurological InstituteMcGill UniversityCanada

Personalised recommendations