Advertisement

A Tensor-Based Population Value Decomposition to Explain Rectal Toxicity after Prostate Cancer Radiotherapy

  • Juan David Ospina
  • Frédéric Commandeur
  • Richard Ríos
  • Gaël Dréan
  • Juan Carlos Correa
  • Antoine Simon
  • Pascal Haigron
  • Renaud de Crevoisier
  • Oscar Acosta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

In prostate cancer radiotherapy the association between the dose distribution and the occurrence of undesirable side-effects is yet to be revealed. In this work a method to perform population analysis by comparing the dose distributions is proposed. The method is a tensor-based approach that generalises an existing method for 2D images and allows for the highlighting of over irradiated zones correlated with rectal bleeding after prostate cancer radiotherapy. Thus, the aim is to contribute to the elucidation of the dose patterns correlated with rectal toxicity. The method was applied to a cohort of 63 patients and it was able to build up a dose pattern characterizing the difference between patients presenting rectal bleeding after prostate cancer radiotherapy and those who did not.

Keywords

Singular Value Decomposition Dose Distribution Rectal Bleeding Normality Assumption Normal Tissue Complication Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ting, J.Y., Wu, X., Fiedler, J.A., Yang, C., Watzich, M.L., Markoe, A.: Dose-volume histograms for bladder and rectum. Int. J. Radiat. Oncol. Biol. Phys. 38, 1105–1111 (1997)CrossRefGoogle Scholar
  2. 2.
    Sohn, M., Alber, M., Yan, D.: Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 69, 230–239 (2007)CrossRefGoogle Scholar
  3. 3.
    Fiorino, C., Vavassori, V., Sanguineti, G., Bianchi, C., Cattaneo, G.M., Piazzolla, A., Cozzarini, C.: Rectum contouring variability in patients treated for prostate cancer: impact on rectum dose-volume histograms and normal tissue complication probability. Radiother. Oncol. 63, 249–255 (2002)CrossRefGoogle Scholar
  4. 4.
    Kupchak, C., Battista, J., Dyk, J.V.: Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Med. Phys. 35, 333–343 (2008)CrossRefGoogle Scholar
  5. 5.
    Buettner, F., Gulliford, S.L., Webb, S., Sydes, M.R., Dearnaley, D.P., Partridge, M.: Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: An analysis of data from the mrc rt01 trial (isrctn 47772397). Physics in Medicine and Biology 54, 6535 (2009)CrossRefGoogle Scholar
  6. 6.
    Buettner, F., Gulliford, S.L., Webb, S., Partridge, M.: Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution. Physics in Medicine and Biology 56, 2103 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, R., Chan, E.K., Kosztyla, R., Liu, M., Moiseenko, V.: Dose-distance metric that predicts late rectal bleeding in patients receiving radical prostate external-beam radiotherapy. Physics in Medicine and Biology 57, 8297 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, B., et al.: Spatial characterization and classification of rectal bleeding in prostate cancer radiotherapy with a voxel-based principal components analysis model for 3D dose distribution. In: Madabhushi, A., Dowling, J., Huisman, H., Barratt, D. (eds.) Prostate Cancer Imaging 2011. LNCS, vol. 6963, pp. 60–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Crainiceanu, C.M., Caffo, B.S., Luo, S., Zipunnikov, V.M., Punjabi, N.M.: Population value decomposition, a framework for the analysis of image populations. Journal of the American Statistical Association 106, 775–790 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C., Frackowiak, R.: Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2, 189–210 (1994)CrossRefGoogle Scholar
  11. 11.
    Ashburner, J., Friston, K.: Nonlinear spatial normalizatioon using bbasis functions. Human Brain Mapping 7, 254–266 (1999)CrossRefGoogle Scholar
  12. 12.
    Acosta, O., Drean, G., Ospina, J.D., Simon, A., Haigron, P., Lafond, C., De Crevoisier, R.: Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Physics in Medicine and Biology 58, 2581 (2013)CrossRefGoogle Scholar
  13. 13.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Beckendorf, V., Guerif, S., Le Prisé, E., Cosset, J.M., Bougnoux, A., Chauvet, B., Salem, N., Chapet, O., Bourdain, S., Bachaud, J.M., Maingon, P., Hannoun-Levi, J.M., Malissard, L., Simon, J.M., Pommier, P., Hay, M., Dubray, B., Lagrange, J.L., Luporsi, E., Bey, P.: 70 gy versus 80 gy in localized prostate cancer: 5-year results of getug 06 randomized trial. International Journal of Radiation Oncology*Biology*Physics 80, 1056–1063 (2011)CrossRefGoogle Scholar
  15. 15.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan David Ospina
    • 1
    • 2
    • 4
  • Frédéric Commandeur
    • 1
    • 2
  • Richard Ríos
    • 1
    • 2
    • 4
  • Gaël Dréan
    • 1
    • 2
  • Juan Carlos Correa
    • 4
  • Antoine Simon
    • 1
    • 2
  • Pascal Haigron
    • 1
    • 2
  • Renaud de Crevoisier
    • 1
    • 2
    • 3
  • Oscar Acosta
    • 1
    • 2
  1. 1.INSERM, U 1099RennesFrance
  2. 2.LTSIUniversité de Rennes 1France
  3. 3.Departement de RadiothérapieCentre Eugène MarquisFrance
  4. 4.Universidad Nacional de ColombiaColombia

Personalised recommendations