Advertisement

Geodesic Distances to Landmarks for Dense Correspondence on Ensembles of Complex Shapes

  • Manasi Datar
  • Ilwoo Lyu
  • SunHyung Kim
  • Joshua Cates
  • Martin A. Styner
  • Ross Whitaker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

Establishing correspondence points across a set of biomedical shapes is an important technology for a variety of applications that rely on statistical analysis of individual subjects and populations. The inherent complexity (e.g. cortical surface shapes) and variability (e.g. cardiac chambers) evident in many biomedical shapes introduce significant challenges in finding a useful set of dense correspondences. Application specific strategies, such as registration of simplified (e.g. inflated or smoothed) surfaces or relying on manually placed landmarks, provide some improvement but suffer from limitations including increased computational complexity and ambiguity in landmark placement. This paper proposes a method for dense point correspondence on shape ensembles using geodesic distances to a priori landmarks as features. A novel set of numerical techniques for fast computation of geodesic distances to point sets is used to extract these features. The proposed method minimizes the ensemble entropy based on these features, resulting in isometry invariant correspondences in a very general, flexible framework.

Keywords

Left Atrium Geodesic Distance Cortical Surface Eikonal Equation Automatic Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lorenzen, P.J., Davis, B.C., Joshi, S.: Unbiased atlas formation via large deformations metric mapping. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 411–418. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. The Insight Journal (2006)Google Scholar
  3. 3.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Thompson, P.M., et al.: Mapping cortical change in alzheimers disease, brain development, and schizophrenia (2004)Google Scholar
  6. 6.
    Essen, D.C.V.: A population-average, landmark- and surface-based (pals) atlas of human cerebral cortex. NeuroImage 28(3), 635–662 (2005)CrossRefGoogle Scholar
  7. 7.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, 1168–1172 (2006)Google Scholar
  8. 8.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vision 89(2-3), 266–286 (2010)CrossRefGoogle Scholar
  10. 10.
    Fu, Z., Kirby, M., Whitaker, R.: A fast iterative method for solving the eikonal equation on triangulated meshes. SIAM Journal on Scientific Computing (2011)Google Scholar
  11. 11.
    Jeong, W., Whitaker, R.: A fast iterative method for eikonal equations. SIAM Journal on Scientific Computing 30(5), 2512–2534 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Datar, M., Gur, Y., Paniagua, B., Styner, M., Whitaker, R.: Geometric correspondence for ensembles of nonregular shapes. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 368–375. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lyu, I., et al.: Group-wise cortical correspondence via sulcal curve-constrained entropy minimization. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 364–375. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Lyttelton, O., Boucher, M., Robbins, S., Evans, A.: An unbiased iterative group registration template for cortical surface analysis. NeuroImage 34(4), 1535–1544 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manasi Datar
    • 1
  • Ilwoo Lyu
    • 2
  • SunHyung Kim
    • 3
  • Joshua Cates
    • 1
    • 4
  • Martin A. Styner
    • 2
    • 3
  • Ross Whitaker
    • 1
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahUSA
  2. 2.Department of Computer ScienceUniversity of North Carolina at Chapel HillUSA
  3. 3.Department of PsychiatryUniversity of North Carolina at Chapel HillUSA
  4. 4.CARMA CenterUniversity of UtahUSA

Personalised recommendations