Advertisement

A Bayesian Approach for Spatially Adaptive Regularisation in Non-rigid Registration

  • Ivor J. A. Simpson
  • Mark W. Woolrich
  • Manuel Jorge Cardoso
  • David M. Cash
  • Marc Modat
  • Julia A. Schnabel
  • Sebastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

This paper introduces a novel method for inferring spatially varying regularisation in non-rigid registration. This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on transformations is parametrised as a weighted mixture of spatially localised components. Such an approach has the advantage of allowing the registration to be more flexibly driven by the data than a more traditional global regularisation scheme, such as bending energy. The proposed method adaptively determines the influence of the prior in a local region. The importance of the prior may be reduced in areas where the data better supports deformations, or can enforce a stronger constraint in less informative areas. Consequently, the use of such a spatially adaptive prior may reduce the unwanted impact of regularisation on the inferred deformation field. This is especially important for applications such as tensor based morphometry, where the features of interest are directly derived from the deformation field. The proposed approach is demonstrated with application to tensor based morphometry analysis of subjects with Alzheimer’s disease and healthy controls. The results show that using the proposed spatially adaptive prior leads to deformation fields that have a substantially lower average complexity, but which also provide more accurate localisation of statistical group differences.

Keywords

Transformation Parameter Inference Scheme Harmonic Energy Adaptive Regularisation Approximate Posterior Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashburner, J., Friston, K.: Voxel-based morphometry–the methods. Neuroimage 11, 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Lester, H., Arridge, S.R., Jansons, K.M., Lemieux, L., Hajnal, J.V., Oatridge, A.: Non-linear registration with the variable viscosity fluid algorithm. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 238–251. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding 66(2), 207–222 (1997)CrossRefGoogle Scholar
  4. 4.
    Staring, M., Klein, S., Pluim, J.: Nonrigid registration with tissue-dependent filtering of the deformation field. Physics in Medicine and Biology 52, 6879 (2007)CrossRefGoogle Scholar
  5. 5.
    Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. International Journal of Computer Vision 50(3), 329–343 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Risholm, P., Samset, E., Wells III, W.: Bayesian estimation of deformation and elastic parameters in non-rigid registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 104–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Simpson, I., Schnabel, J., Groves, A., Andersson, J., Woolrich, M.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59, 2438–2451 (2012)CrossRefGoogle Scholar
  8. 8.
    Ashburner, J., Friston, K.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)CrossRefGoogle Scholar
  9. 9.
    Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3), 1104–1120 (2008)CrossRefGoogle Scholar
  10. 10.
    Attias, H.: A variational Bayesian framework for graphical models. Advances in Neural Information Processing Systems 12(1-2), 209–215 (2000)Google Scholar
  11. 11.
    Guimond, A., Meunier, J., Thirion, J.: Average brain models: A convergence study. Computer Vision and Image Understanding 77(2), 192–210 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ivor J. A. Simpson
    • 1
    • 2
  • Mark W. Woolrich
    • 3
  • Manuel Jorge Cardoso
    • 1
  • David M. Cash
    • 1
  • Marc Modat
    • 1
  • Julia A. Schnabel
    • 2
  • Sebastien Ourselin
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonUK
  2. 2.Institute of Biomedical EngineeringUniversity of OxfordUK
  3. 3.Oxford Centre for Human Brain ActivityUniversity of OxfordUK

Personalised recommendations