Registration of Free-Breathing 3D+t Abdominal Perfusion CT Images via Co-segmentation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)


Dynamic contrast-enhanced computed tomography (DCE-CT) is a valuable imaging modality to assess tissues properties, particularly in tumours, by estimating pharmacokinetic parameters from the evolution of pixels intensities in 3D+t acquisitions. However, this requires a registration of the whole sequence of volumes, which is challenging especially when the patient breathes freely. In this paper, we propose a generic, fast and automatic method to address this problem. As standard iconic registration methods are not robust to contrast intake, we rather rely on the segmentation of the organ of interest. This segmentation is performed jointly with the registration of the sequence within a novel co-segmentation framework. Our approach is based on implicit template deformation, that we extend to a co-segmentation algorithm which provides as outputs both a segmentation of the organ of interest in every image and stabilising transformations for the whole sequence. The proposed method is validated on 15 datasets acquired from patients with renal lesions and shows improvement in terms of registration and estimation of pharmacokinetic parameters over the state-of-the-art method.


Active Contour Rigid Transformation Contrast Agent Injection Robust Registration Kidney Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kambadakone, A., Sahani, D.: Body Perfusion CT: Technique, Clinical Applications, and Advances. Radiologic Clinics of North America 47(1), 161–178 (2009)CrossRefGoogle Scholar
  2. 2.
    Sance, R., et al.: Alignment of 3D DCE-MRI Abdominal Series for Optimal Quantification of Kidney Function. In: Proceedings of IEEE ISPA 2007, pp. 413–417 (2007)Google Scholar
  3. 3.
    Linguraru, M., et al.: Renal Tumor Quantification and Classification in Contrast-Enhanced Abdominal CT. Pattern Recognition 42(6), 1149–1161 (2009)CrossRefGoogle Scholar
  4. 4.
    Zöllner, F., et al.: Assessment of 3D DCE-MRI of the Kidneys Using Non-Rigid Image Registration and Segmentation of Voxel Time Courses. Computerized Medical Imaging and Graphics 33(3), 171–181 (2009)CrossRefGoogle Scholar
  5. 5.
    Romain, B., Letort, V., Lucidarme, O., d’Alché-Buc, F., Rouet, L.: Registration of Free-Breathing Abdominal 3D Contrast-Enhanced CT. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds.) MMCP 2012 and CCAAI 2012. LNCS, vol. 7601, pp. 274–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson, M.: Motion Correction and Parameter Estimation in DCE-MRI Sequences: Application to Colorectal Cance. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Sun, Y., Jolly, M.-P., Moura, J.M.F.: Contrast-Invariant Registration of Cardiac and Renal MR Perfusion Images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 903–910. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Song, T., Lee, V.S., Rusinek, H., Wong, S., Laine, A.F.: Integrated Four Dimensional Registration and Segmentation of Dynamic Renal MR Images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 758–765. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    El-Baz, A., Fahmi, R., Yuksel, S.E., Farag, A.A., Miller, W., El-Ghar, M.A., Eldiasty, T.: A New CAD System for the Evaluation of Kidney Diseases Using DCE-MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 446–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-Time 3D Image Segmentation by User-Constrained Template Deformation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 561–568. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Yezzi, A., et al.: A Variational Framework for Integrating Segmentation and Registration Through Active Contours. MedIA 7(2), 171–185 (2003)Google Scholar
  13. 13.
    Tofts, P., et al.: Estimating Kinetic Parameters from Dynamic Contrast-Enhanced T1-weighted MRI of a Diffusable Tracer: Standardized Quantities and Symbols. Journal of Magnetic Resonance Imaging 10(3), 223–232 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Philips Research MedisysSuresnesFrance
  2. 2.CEREMADE UMR 7534, CNRSUniversité Paris DauphineParisFrance
  3. 3.MAS, Ecole Centrale ParisChatenay MalabryFrance
  4. 4.Hôpital La Pitié-Salpétrière, AP-HPParisFrance

Personalised recommendations