Abstract
We propose a method for multi-atlas label propagation based on encoding the individual atlases by randomized classification forests. Most current approaches perform a non-linear registration between all atlases and the target image, followed by a sophisticated fusion scheme. While these approaches can achieve high accuracy, in general they do so at high computational cost. This negatively affects the scalability to large databases and experimentation. To tackle this issue, we propose to use a small and deep classification forest to encode each atlas individually in reference to an aligned probabilistic atlas, resulting in an Atlas Forest (AF). At test time, each AF yields a probabilistic label estimate, and fusion is done by averaging. Our scheme performs only one registration per target image, achieves good results with a simple fusion scheme, and allows for efficient experimentation. In contrast to standard forest schemes, incorporation of new scans is possible without retraining, and target-specific selection of atlases remains possible. The evaluation on three different databases shows accuracy at the level of the state of the art, at a significantly lower runtime.
Chapter PDF
Similar content being viewed by others
References
Landman, B., Warfield, S. (eds.): MICCAI Workshop on Multi-Atlas Labeling (2012)
Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)
Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE TMI 23(7), 903–921 (2004)
Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A., et al.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)
Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Rousseau, F., Habas, P., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE TMI 30(10), 1852–1862 (2011)
Wu, G., Wang, Q., Zhang, D., Shen, D.: Robust patch-based multi-atlas labeling by joint sparsity regularization. In: MICCAI Workshop STMI (2012)
Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)
Wang, H., Avants, B., Yushkevich, P.: A combined joint label fusion and corrective learning approach. In: MICCAI Workshop on Multi-Atlas Labeling (2012)
Asman, A.J., Landman, B.A.: Multi-atlas segmentation using non-local STAPLE. In: MICCAI Workshop on Multi-Atlas Labeling (2012)
Asman, A., Landman, B.: Multi-atlas segmentation using spatial STAPLE. In: MICCAI Workshop on Multi-Atlas Labeling (2012)
Wang, Z., Wolz, R., Tong, T., Rueckert, D.: Spatially aware patch-based segmentation (SAPS): An alternative patch-based segmentation framework. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 93–103. Springer, Heidelberg (2013)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Computer Vision and Pattern Recognition, CVPR (2011)
Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011)
Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)
Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)
Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)
Breiman, L.: Random forests. Machine Learning (2001)
Criminisi, A., Shotton, J. (eds.): Decision Forests for Computer Vision and Medical Image Analysis. Springer (2013)
Shattuck, D., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K., Poldrack, R., Bilder, R., Toga, A.: Construction of a 3d probabilistic atlas of human cortical structures. NeuroImage 39(3), 1064–1080 (2007)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. MedIA (2008)
Tustison, N., Gee, J.: N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. The Insight Journal (2010)
Ledig, C., Wolz, R., Aljabar, P., Lötjönen, J., Heckemann, R., Hammers, A., Rueckert, D.: Multi-class brain segmentation using atlas propagation and em-based refinement. In: IEEE ISBI (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zikic, D., Glocker, B., Criminisi, A. (2013). Atlas Encoding by Randomized Forests for Efficient Label Propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40760-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40760-4_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40759-8
Online ISBN: 978-3-642-40760-4
eBook Packages: Computer ScienceComputer Science (R0)