Skip to main content

A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

  • 6112 Accesses

Abstract

Recently, a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. We investigate the energy complexity for recurrent networks which bounds the number of active neurons at any time instant of a computation. We prove that any deterministic finite automaton with m states can be simulated by a neural network of optimal size \(s=\Theta(\sqrt{m})\) with time overhead O(s/e) per one input bit, using the energy O(e), for any e = Ω(logs) and e = O(s), which shows the time-energy tradeoff in recurrent networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets. Journal of the ACM 14(2), 495–514 (1991)

    Article  MathSciNet  Google Scholar 

  2. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

    Article  Google Scholar 

  3. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Lennie, P.: The cost of cortical computation. Current Biology 13(6), 493–497 (2003)

    Article  Google Scholar 

  5. Lupanov, O.: On the synthesis of threshold circuits. Problemy Kibernetiki 26, 109–140 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    Google Scholar 

  7. Siegelmann, H.T., Sontag, E.D.: Computational power of neural networks. Journal of Computer System Science 50(1), 132–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Šíma, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)

    Article  MATH  Google Scholar 

  9. Šíma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Suzuki, A., Uchizawa, K., Zhou, X.: Energy and fan-in of threshold circuits computing Mod functions. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 154–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold circuits with sparse activity. Neural Computation 18(12), 2994–3008 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Uchizawa, K., Nishizeki, T., Takimoto, E.: Energy and depth of threshold circuits. Theoretical Computer Science 411(44-46), 3938–3946 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of constant-depth threshold circuits with small energy complexity. Theoretical Computer Science 407(1-3), 474–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Uchizawa, K., Takimoto, E.: Lower bounds for linear decision trees via an energy complexity argument. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 568–579. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Uchizawa, K., Takimoto, E., Nishizeki, T.: Size-energy tradeoffs for unate circuits computing symmetric Boolean functions. Theoretical Computer Science 412(8-10), 773–782 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šíma, J. (2013). A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics