Pattern-Based Distinction of Paradigmatic Relations for German Nouns, Verbs, Adjectives

  • Sabine Schulte im Walde
  • Maximilian Köper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8105)

Abstract

This paper implements a simple vector space model relying on lexico-syntactic patterns to distinguish between the paradigmatic relations synonymy, antonymy and hypernymy. Our study is performed across word classes, and models the lexical relations between German nouns, verbs and adjectives. Applying nearest-centroid classification to the relation vectors, we achieve a precision of 59.80%, which significantly outperforms the majority baseline (χ2, p<0.05). The best results rely on large-scale, noisy patterns, without significant improvements from various pattern generalisations and reliability filters. Analysing the classification shows that (i) antonym/synonym distinction is performed significantly better than synonym/hypernym distinction, and (ii) that paradigmatic relations between verbs are more difficult to predict than paradigmatic relations between nouns or adjectives.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy, M.L.: Semantic Relations and the Lexicon. Cambridge University Press (2003)Google Scholar
  2. 2.
    Edmonds, P., Hirst, G.: Near-Synonymy and Lexical Choice. Computational Linguistics 28(2), 105–144 (2002)CrossRefGoogle Scholar
  3. 3.
    Curran, J.: From Distributional to Semantic Similarity. PhD thesis, Institute for Communicating and Collaborative Systems, School of Informatics. University of Edinburgh (2003)Google Scholar
  4. 4.
    van der Plas, L., Tiedemann, J.: Finding Synonyms using Automatic Word Alignment and Measures of Distributional Similarity. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, Sydney, Australia, pp. 866–873 (2006)Google Scholar
  5. 5.
    Fellbaum, C.: Co-Occurrence and Antonymy. Lexicography 8(4), 281–303 (1995)CrossRefGoogle Scholar
  6. 6.
    Harabagiu, S.M., Hickl, A., Lacatusu, F.: Negation, Contrast and Contradiction in Text Processing. In: Proceedings of the 21st National Conference on Artificial Intelligence, Boston, MA, pp. 755–762 (2006)Google Scholar
  7. 7.
    Mohammad, S., Dorr, B., Hirst, G.: Computing Word-Pair Antonymy. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Waikiki, Hawaii, pp. 982–991 (2008)Google Scholar
  8. 8.
    Hearst, M.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: Proceedings of the 14th International Conference on Computational Linguistics, Nantes, France, pp. 539–545 (1992)Google Scholar
  9. 9.
    Caraballo, S.A.: Automatic Acquisition of a Hypernym-labeled Noun Hierarchy from Text. PhD thesis, Brown University (2001)Google Scholar
  10. 10.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning Syntactic Patterns for Automatic Hypernym Discovery. Advances in Neural Information Processing Systems 17, 1297–1304 (2004)Google Scholar
  11. 11.
    Turney, P.D.: A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations. In: Proceedings of the 22nd International Conference on Computational Linguistics, Manchester, UK, pp. 905–912 (2008)Google Scholar
  12. 12.
    Yih, W.T., Zweig, G., Platt, J.C.: Polarity Inducing Latent Semantic Analysis. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, pp. 1212–1222 (2012)Google Scholar
  13. 13.
    Mohammad, S.M., Dorr, B.J., Hirst, G., Turney, P.D.: Computing Lexical Contrast. Computational Linguistics 39(3) (to appear, 2013)Google Scholar
  14. 14.
    Berland, M., Charniak, E.: Finding Parts in Very Large Corpora. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, Maryland, MD, pp. 57–64 (1999)Google Scholar
  15. 15.
    Girju, R., Badulescu, A., Moldovan, D.: Automatic Discovery of Part-Whole Relations. Computational Linguistics 32(1), 83–135 (2006)Google Scholar
  16. 16.
    Girju, R.: Automatic Detection of Causal Relations for Question Answering. In: Proceedings of the ACL Workshop on Multilingual Summarization and Question Answering – Machine Learning and Beyond, Sapporo, Japan, pp. 76–83 (2003)Google Scholar
  17. 17.
    Chklovski, T., Pantel, P.: VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, pp. 33–40 (2004)Google Scholar
  18. 18.
    Pantel, P., Pennacchiotti, M.: Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, pp. 113–120 (2006)Google Scholar
  19. 19.
    Turney, P.D.: Similarity of Semantic Relations. Computational Linguistics 32(3), 379–416 (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Edmonds, P.: Choosing the Word most typical in Context using a Lexical Co-occurrence Netword. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics, Madrid, Spain, pp. 507–509 (1997)Google Scholar
  21. 21.
    Edmonds, P.: Translating Near-Synonyms: Possibilities and Preferences in the Interlingua. In: Proceedings of the AMTA/SIG-IL Second Workshop on Interlinguas, Langhorne, PA, pp. 23–30 (1998)Google Scholar
  22. 22.
    Edmonds, P.: Semantic Representations of Near-Synonyms for Automatic Lexical Choice. PhD thesis, Department of Computer Science. University of Toronto, Published as technical report CSRI-399 (1999)Google Scholar
  23. 23.
    Curran, J.: Ensemble Methods for Automatic Thesaurus Extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 222–229 (2002)Google Scholar
  24. 24.
    Lin, D., Zhao, S., Qin, L., Zhou, M.: Identifying Synonyms among Distributionally Similar Words. In: Proceedings of the International Conferences on Artificial Intelligence, Acapulco, Mexico, pp. 1492–1493 (2003)Google Scholar
  25. 25.
    Erk, K., Padó, S.: A Structured Vector Space Model for Word Meaning in Context. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Waikiki, Hawaii, pp. 897–906 (2008)Google Scholar
  26. 26.
    Weeds, J., Weir, D., McCarthy, D.: Characterising Measures of Lexical Distributional Similarity. In: Proceedings of the 20th International Conference of Computational Linguistics, Geneva, Switzerland, pp. 1015–1021 (2004)Google Scholar
  27. 27.
    Lenci, A., Benotto, G.: Identifying Hypernyms in Distributional Semantic Spaces. In: Proceedings of the 1st Joint Conference on Lexical and Computational Semantics, Montréal, Canada, pp. 75–79 (2012)Google Scholar
  28. 28.
    Caraballo, S.A.: Automatic Construction of a Hypernym-labeled Noun Hierarchy from Text. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, Maryland, MD, pp. 120–126 (1999)Google Scholar
  29. 29.
    Velardi, P., Fabriani, P., Missikoff, M.: Using Text Processing Techniques to Automatically enrich a Domain Ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, Ogunquit, ME, pp. 270–284 (2001)Google Scholar
  30. 30.
    Cimiano, P., Schmidt-Thieme, L., Pivk, A., Staab, S.: Learning Taxonomic Relations from Heterogeneous Evidence. In: Proceedings of the ECAI Workshop on Ontology Learning and Population (2004)Google Scholar
  31. 31.
    Snow, R., Jurafsky, D., Ng, A.Y.: Semantic Taxonomy Induction from Heterogenous Evidence. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, pp. 801–808 (2006)Google Scholar
  32. 32.
    Fellbaum, C.: English Verbs as a Semantic Net. Journal of Lexicography 3(4), 278–301 (1990)CrossRefGoogle Scholar
  33. 33.
    Fellbaum, C., Chaffin, R.: Some Principles of the Organization of Verbs in the Mental Lexicon. In: Proceedings of the 12th Annual Conference of the Cognitive Science Society of America, pp. 420–427 (1990)Google Scholar
  34. 34.
    Fellbaum, C.: A Semantic Network of English Verbs. In: [46], pp. 69–104Google Scholar
  35. 35.
    Charles, W., Miller, G.: Contexts of Antonymous Adjectives. Applied Psycholinguistics 10, 357–375 (1989)CrossRefGoogle Scholar
  36. 36.
    Justeson, J.S., Katz, S.M.: Co-Occurrence of Antonymous Adjectives and their Contexts. Computational Linguistics 17, 1–19 (1991)Google Scholar
  37. 37.
    Lucerto, C., Pinto, D., Jiménez-Salazar, H.: An Automatic Method to Identify Antonymy Relations. In: Proceedings of the IBERAMIA Workshop on Lexical Resources and the Web for Word Sense Disambiguation, Puebla, Mexico, pp. 105–111 (2004)Google Scholar
  38. 38.
    de Marneffe, M.C., Rafferty, A.N., Manning, C.D.: Finding Contradictions in Text. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Columbus, OH, pp. 1039–1047 (2008)Google Scholar
  39. 39.
    Lin, D., Pantel, P.: DIRT – Discovery of Inference Rules from Text. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, San Francisco, CA, pp. 323–328 (2001)Google Scholar
  40. 40.
    Turney, P.D.: Measuring Semantic Similarity by Latent Relational Analysis. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 1136–1141 (2005)Google Scholar
  41. 41.
    Turney, P.D.: Expressing Implicit Semantic Relations without Supervision. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, pp. 313–320 (2006)Google Scholar
  42. 42.
    Lin, D.: Automatic Retrieval and Clustering of Similar Words. In: Proceedings of the 17th International Conference on Computational Linguistics, Montreal, Canada, pp. 768–774 (1998)Google Scholar
  43. 43.
    Hamp, B., Feldweg, H.: GermaNet – a Lexical-Semantic Net for German. In: Proceedings of the ACL Workshop on Automatic Information Extraction and Building Lexical Semantic Resources for NLP Applications, Madrid, Spain, pp. 9–15 (1997)Google Scholar
  44. 44.
    Kunze, C.: Extension and Use of GermaNet, a Lexical-Semantic Database. In: Proceedings of the 2nd International Conference on Language Resources and Evaluation, Athens, Greece, pp. 999–1002 (2000)Google Scholar
  45. 45.
    Lemnitzer, L., Kunze, C.: Computerlexikographie. Gunter Narr Verlag, Tübingen (2007)Google Scholar
  46. 46.
    Fellbaum, C. (ed.): WordNet – An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)Google Scholar
  47. 47.
    Faaß, G., Heid, U., Schmid, H.: Design and Application of a Gold Standard for Morphological Analysis: SMOR in Validation. In: Proceedings of the 7th International Conference on Language Resources and Evaluation, Valletta, Malta, pp. 803–810 (2010)Google Scholar
  48. 48.
    Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E.: The WaCky Wide Web: A Collection of Very Large Linguistically Processed Web-Crawled Corpora. Language Resources and Evaluation 43(3), 209–226 (2009)CrossRefGoogle Scholar
  49. 49.
    Schiller, A., Teufel, S., Stöckert, C., Thielen, C.: Guidelines für das Tagging deutscher Textcorpora mit STTS. Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, and Seminar für Sprachwissenschaft, Universität Tübingen (1999)Google Scholar
  50. 50.
    Miller, G.A., Fellbaum, C.: Semantic Networks of English. Cognition 41, 197–229 (1991)CrossRefGoogle Scholar
  51. 51.
    Church, K.W., Hanks, P.: Word Association Norms, Mutual Information, and Lexicography. Computational Linguistics 16(1), 22–29 (1990)Google Scholar
  52. 52.
    Christopher, D., Manning, P.R., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sabine Schulte im Walde
    • 1
  • Maximilian Köper
    • 1
  1. 1.Institut für Maschinelle SprachverarbeitungUniversität StuttgartGermany

Personalised recommendations