Modelling and Analysis of Phase Variation in Bacterial Colony Growth

  • Ovidiu Pârvu
  • David Gilbert
  • Monika Heiner
  • Fei Liu
  • Nigel Saunders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8130)


We describe an investigation into spatial modelling by means of an ongoing case study, namely phase variation patterning in bacterial colony growth, forming circular colonies on a flat medium. We explore the application of two different geometries, rectangular and circular, for modelling and analysing the colony growth in 2.5 dimensions. Our modelling paradigm is that of coloured stochastic Petri nets and we employ stochastic simulation in order to generate output which is then analysed for sector patterning. The analysis results are used to compare the two geometries, and our multidimensional approach is a precursor to more work on detailed multiscale modelling.


Coloured stochastic Petri nets spatial modelling Systems Biology pattern analysis multidimensional BioModel Engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, Cambridge (2008)Google Scholar
  2. 2.
    Gao, Q., Gilbert, D., Heiner, M., Liu, F., Maccagnola, D., Tree, D.: Multiscale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 99(PrePrints), 1 (2012)Google Scholar
  3. 3.
    Gilbert, D., Heiner, M., Liu, F., Saunders, N.: Colouring Space - A Coloured Framework for Spatial Modelling in Systems Biology. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 230–249. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  5. 5.
    Heiner, M., Gilbert, D.: How Might Petri Nets Enhance Your Systems Biology Toolkit. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 17–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – A unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Heiner, M., Rohr, C., Schwarick, M.: MARCIE - Model checking and Reachability analysis done Efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Hood, D.W., Deadman, M.E., Jennings, M.P., Bisercic, M., Fleischmann, R.D., Venter, J.C., Moxon, E.R.: DNA repeats identify novel virulence genes in haemophilus influenzae. Proceedings of the National Academy of Sciences of the United States of America 93(20), 11121–11125 (1996), PMID: 8855319CrossRefGoogle Scholar
  9. 9.
    Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics 18(1), 50–60 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moxon, E.R., Rainey, P.B., Nowak, M.A., Lenski, R.E.: Adaptive evolution of highly mutable loci in pathogenic bacteria. Current Biology: CB 4(1), 24–33 (1994), PMID: 7922307CrossRefGoogle Scholar
  11. 11.
    Rohr, C., Marwan, W., Heiner, M.: Snoopy - a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)CrossRefGoogle Scholar
  12. 12.
    Salaün, L., Ayraud, S., Saunders, N.J.: Phase variation mediated niche adaptation during prolonged experimental murine infection with helicobacter pylori. Microbiology 151(pt. 3), 917–923 (2005), PMID: 15758236 CrossRefGoogle Scholar
  13. 13.
    Salaün, L., Linz, B., Suerbaum, S., Saunders, N.J.: The diversity within an expanded and redefined repertoire of phase-variable genes in helicobacter pylori. Microbiology 150(pt. 4), 817–830 (2004), PMID: 15073292 CrossRefGoogle Scholar
  14. 14.
    Salaün, L., Snyder, L.A., Saunders, N.J.: Adaptation by phase variation in pathogenic bacteria. Advances in Applied Microbiology 52, 263–301 (2003), PMID: 12964248CrossRefGoogle Scholar
  15. 15.
    Saunders, N.J., Peden, J.F., Hood, D.W., Moxon, E.R.: Simple sequence repeats in the helicobacter pylori genome. Molecular Microbiology 27(6), 1091–1098 (1998), PMID: 9570395CrossRefGoogle Scholar
  16. 16.
    Saunders, N., Moxon, E., Gravenor, M.: Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiology 149(2), 485–495 (2003)CrossRefGoogle Scholar
  17. 17.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 3(52) (1965)Google Scholar
  18. 18.
    Snyder, L.A., Butcher, S.A., Saunders, N.J.: Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic neisseria spp. Microbiology 147(pt. 8), 2321–2332 (2001), PMID: 11496009 Google Scholar
  19. 19.
    Weisstein, E.W.: Wolfram MathWorld,
  20. 20.
    Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar
  21. 21.
    Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis of data. Biometrika 55(1), 1–17 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ovidiu Pârvu
    • 1
  • David Gilbert
    • 1
  • Monika Heiner
    • 2
  • Fei Liu
    • 3
  • Nigel Saunders
    • 1
  1. 1.School of Information Systems, Computing and MathematicsBrunel UniversityUxbridgeUK
  2. 2.Computer Science InstituteBrandenburg University of TechnologyCottbusGermany
  3. 3.Harbin Institute of TechnologyHarbinChina

Personalised recommendations