Relative Reduct-Based Estimation of Relevance for Stylometric Features

  • Urszula Stańczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8133)

Abstract

In rough set theory characteristic features, which describe classified objects, correspond to conditional attributes. A relative reduct is such an irreducible subset of attributes that preserves the quality of approximation of a complete decision table. For a decision table a single reduct or many reducts may exist. In typical processing one reduct is selected for the subsequent generation of decision rules, while others can be discarded. Yet when the set of reducts is analysed as a whole, observations and conclusions drawn can be used to evaluate relevance of attributes, which in turn can be employed in reduction of features not only for rule-based but also connectionist classifiers. The paper describes the steps of such procedure applied in the domain of stylometric processing of literary texts.

Keywords

DRSA Relative Reduct Characteristic Feature Relevance Measure Decision Algorithm ANN Stylometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities, ch. 23. Blackwell, Oxford (2004)Google Scholar
  2. 2.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  3. 3.
    Fiesler, E., Beale, R.: Handbook of neural computation. Oxford University Press (1997)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Sowiński, R.: The use of rough sets and fuzzy sets in Multi Criteria Decision Making. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, ch. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Greco, S., Matarazzo, B., Sowiński, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. Transactions on Rough Sets 7, 36–52 (2007)Google Scholar
  6. 6.
    Moshkov, M.J., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147, 1–12 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of literary texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 600–609. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Stańczyk, U.: Application of DRSA-ANN classifier in computational stylistics. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 695–704. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Stańczyk, U.: Reduct-based analysis of decision algorithms: Application in computational stylistics. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 295–302. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Stańczyk, U.: Rule-based approach to computational stylistics. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds.) SIIS 2011. LNCS (LNAI), vol. 7053, pp. 168–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Waugh, S., Adams, A., Twedeedie, F.: Computational stylistics using artificial neural networks. Literary and Linguistic Computing 15(2), 187–198 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Urszula Stańczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations