Author-Topic over Time (AToT): A Dynamic Users’ Interest Model

  • Shuo XuEmail author
  • Qingwei Shi
  • Xiaodong Qiao
  • Lijun Zhu
  • Hanmin Jung
  • Seungwoo Lee
  • Sung-Pil Choi
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 274)


One of the key problems in upgrading information services towards knowledge services is to automatically mine latent topics, users’ interests and their evolution patterns from large-scale S&T literatures. Most of current methods are devoted to either discover static latent topics and users’ interests, or to analyze topic evolution only from intra-features of documents, namely text content without considering directly extra-features of documents such as authors. To overcome this problem, a dynamic users’ interest model for documents using authors and topics with timestamps is proposed, named as Author-Topic over Time (AToT) model, and collapsed Gibbs sampling method is utilized for inferring model parameters. This model is not only able to discover latent topics and users’ interests, but also to mine their changing patterns over time. Finally, the extensive experimental results on NIPS dataset with 1,740 papers indicate that our AToT model is feasible and efficient.


Author-Topic (AT) Model Topic over Time (ToT) Model Author-Topic over Time (AToT) Model Dynamic Users’ Interest Model Collapsed Gibbs Sampling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: WWW 2006, pp. 727–736. ACM, New York (2006)Google Scholar
  2. 2.
    Kim, J., Jeong, D.H., Lee, D., Jung, H.: User-centered innovative technology analysis and prediction application in mobile environment. Multimed. Tools Appl. (2013)Google Scholar
  3. 3.
    Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., Steyvers, M.: Learning author-topic models from text corpora. ACM T. Inform. Syst. 28(1), 1–38 (2010)CrossRefGoogle Scholar
  4. 4.
    McCallum, A., Wang, X., Corrada-Emmanuel, A.: Topic and role discovery in socail networks with experiments on enron and academic email. J. Artif. Intell. Res. 30(1), 249–272 (2007)Google Scholar
  5. 5.
    Mimno, D., McCallum, A.: Expertise modeling for matching papers with reviewers. In: KDD 2007, pp. 500–509. ACM, New York (2007)Google Scholar
  6. 6.
    Kawamae, N.: Author interest topic model. In: SIGIR 2010, pp. 887–888. ACM, New York (2010)Google Scholar
  7. 7.
    Kawamae, N.: Latent interest-topic model: Finding the causal relationships behind dyadic data. In: CIKM 2010, pp. 649–658. ACM, New York (2010)Google Scholar
  8. 8.
    Tang, J., Zhang, J., Jin, R., Yang, Z., Cai, K., Zhang, L., Su, Z.: Topic level expertise search over heterogeneous networks. Mach. Learn. 82(2), 211–237 (2011)CrossRefGoogle Scholar
  9. 9.
    Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic author-topic models for information discovery. In: KDD 2004, pp. 306–315. ACM, New York (2004)Google Scholar
  10. 10.
    Wang, X., Mohanty, N., McCallum, A.: Group and topic discovery from relations and their attributes. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) NIPS18, pp. 1449–1456. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Wang, X., McCallum, A.: Topics over time: A non-Markov continuous-time model of topical trends. In: KDD 2006, pp. 424–433. ACM, New York (2006)Google Scholar
  12. 12.
    Xu, S., Zhu, L., Qiao, X., Shi, Q., Gui, J.: Topic linkages between papers and patents. In: AST 2012. SERSC, pp. 176–183. Daejeon, South Korea (2012)Google Scholar
  13. 13.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML 2006, pp. 113–120. ACM, New York (2006)Google Scholar
  14. 14.
    Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. In: UAI 2008, pp. 579–586 (2008)Google Scholar
  15. 15.
    Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. USA 101(suppl. 1), 5228–5235 (2004)CrossRefGoogle Scholar
  16. 16.
    Owen, C.B.: Parameter estimation for the Beta distribution. Master’s thesis, Brigham Young University (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shuo Xu
    • 1
    Email author
  • Qingwei Shi
    • 1
    • 2
  • Xiaodong Qiao
    • 3
  • Lijun Zhu
    • 1
  • Hanmin Jung
    • 4
  • Seungwoo Lee
    • 4
  • Sung-Pil Choi
    • 4
  1. 1.Information Technology Supporting CenterInstitute of Scientific and Technical Information of ChinaBeijingP.R. China
  2. 2.School of SoftwareLiaoning Technical UniversityHuludaoP.R. China
  3. 3.College of SoftwareNortheast Normal UniversityChangchunP.R. China
  4. 4.Department of Computer Intelligence ResearchKorea Institute of Science and Technology InformationDaejeonKorea

Personalised recommendations