ROI Extraction in Dermatosis Images Using a Method of Chan-Vese Segmentation Based on Saliency Detection

  • Zehan Wang
  • Lijun Zhu
  • Jiandong Qi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 274)


Extraction of ROI (Region-Of-Interest) in dermatosis images can be used in content-based image retrieval (CBIR). Image segmentation takes an important part in it. And the performance of the segmentation algorithm directly influences the efficiency of the ROI extraction results. In this paper, a method of Chan-Vese segmentation based on saliency detection to extract the ROI of the dermatosis images is proposed. Firstly the spectral residual approach (SR) [11] is used to get the saliency map of the dermatosis images. Secondly threshold segmentation is used to get the initial ROI images. Finally the Chan-Vese model is used to segment the initial ROI images to get the final ROI images, which can ensure the active contours evolve close to the object and remove the redundant information from the complex background. The experiment results show that the proposed method has the better performance than only using Chan-Vese method.


saliency detection Chan-Vese model dermatosis images ROI extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahman, M.M., Desai, B.C., Bhattacharya, P.: Image Retrieval-Based Decision Support System for Dermatoscopic Images. In: 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp. 285–290 (2006)Google Scholar
  2. 2.
    Mahmoud, M.K.A., Al-Jumaily, A.: Segmentation of Skin Cancer Images Based on Gradient Vector Flow (GVF) Snake. In: International Conference on Mechatronics and Automation (ICMA), pp. 216–220 (2011)Google Scholar
  3. 3.
    Taur, J.S., Lee, G.H., Tao, C.W., Chen, C., Yang, C.W.: Segmentation of Psoriasis Vulgaris Images Using Multiresolution-Based Orthogonal Subspace Techniques. IEEE Trans onSystems, Man, and Cybernetics, Part B: Cybernetics 36(2), 390–402 (2006)CrossRefGoogle Scholar
  4. 4.
    Lu, J., Kazmierczak, E., Manton, J.H., Sinclair, R.: Automatic Segmentation of Scaling in 2-D Psoriasis Skin Images. IEEE Trans on Medical Imaging 32(4), 719–730 (2013)CrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Rousseau, O., Bourgault, Y.: Heart segmentation with an iterative Chan-Vese algorithm. University of Ottawa, Ontario (2009)Google Scholar
  8. 8.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Itti, L., Koch, C.: A saliency–based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  10. 10.
    Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia 2006, pp. 815–824 (2006)Google Scholar
  11. 11.
    Hou, X., Zhang, L.: Saliency detection: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)Google Scholar
  12. 12.
    Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1597–1604 (2009)Google Scholar
  13. 13.
    Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global Contrast based Salient Region Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 409–416 (2011)Google Scholar
  14. 14.
    Hou, X., Harel, J., Koch, C.: Image Signature: Highlighting Sparse Salient Regions. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(1), 194–201 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zehan Wang
    • 1
  • Lijun Zhu
    • 1
  • Jiandong Qi
    • 2
  1. 1.Institute of Scientific and Technical Information of China (ISTIC)BeijingChina
  2. 2.Information CollegeBeijing Forestry UniversityBeijingChina

Personalised recommendations