Clustering Objects in Heterogeneous Information Network Using Fuzzy C-Mean

  • Muhammad ShoaibEmail author
  • Wang-Cheol Song
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 274)


In this paper we have proposed a fuzzy c-mean based clustering algorithm for categorization of different types of objects present in a heterogeneous information network. We have addressed a particular scenario in this paper when exact structure of objects and their relationships with other objects is either hidden or not known. We have performed the experiments on an agriculture information network and our results depicts that combining automatic extraction of structure of an information network with information objects can improve the quality of clustering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Automatically determining the number of clusters in unlabeled data sets. IEEE Trans. Knowl. Data Eng. 21(3), 335–350 (2009)CrossRefGoogle Scholar
  3. 3.
    Zheng, L., Li, T., Ding, C.: Hierarchical Ensemble Clustering. In: 2010 IEEE International Conference on Data Mining, pp. 1199–1204 (2001)Google Scholar
  4. 4.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge Univ. Press (2010)Google Scholar
  5. 5.
    Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: A structuralclustering algorithm for networks. In: Proc. 2007 ACM SIGKDD Int.Conf. Knowledge Discovery in Databases (KDD 2007), San Jose, CA (August 2007)Google Scholar
  6. 6.
    Szabo, A., Castro, L.N., Delgado, M.R.: FaiNet: An Immune Algorithm for Fuzzy Clustering. In: Proc. WCCI 2012, IEEE World Congress on Computational Intelligence. IEEE press (2012)Google Scholar
  7. 7.
    Serban, G., Campan, A.: A New Core-Based Method For Hierarchical Incremental Clustering. In: Proc. the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005). IEEE (2005), doi:10.1109/SYNASC.2005.9Google Scholar
  8. 8.
    Wang, T., Srivatsa, M., Agrawal, D., Liu, L.: Modeling data flow in socio-information networks: a risk estimation approach. In: Proc. 16th ACM Symposium on Access Control Models and Technologies, pp. 113–122 (2011)Google Scholar
  9. 9.
    Han, J., Sun, Y., Yan, X., Yu, P.S.: Mining knowledge from databases: an information network analysis approach. In: Proc. SIGMOD 2010: 2010 ACM SIGMOD International Conference on Management of Data, pp. 1251–1252 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer EngineeringJeju National UniversityJejuRepublic of Korea

Personalised recommendations