An Intelligent Dynamic Context-Aware System Using Fuzzy Semantic Language

  • Daehyun KangEmail author
  • Jongsoo Sohn
  • Kyunglag Kwon
  • Bok-Gyu Joo
  • In-Jeong Chung
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 274)


The prevalence of smart devices and the wireless Internet environment have enabled users to exploit environmental sensor data in a variety of fields. This has engendered various research issues in the development of context-awareness technology. In this paper, we propose a novel method where semantic web technology and the fuzzy concept are used to perform tasks that express and infer the user’s dynamic context, in distributed heterogeneous computing environments. The proposed method expresses environmental information using numerical values, and converts them into fuzzy OWL. Then, we make inferences based on the user context, using FiRE, a fuzzy inference engine. The suggested method allows us to describe user context information in heterogeneous environments. Because we use fuzzy concepts to represent contextual information, we can easily express its degree or status.


Context-aware computing Fuzzy Knowledge Representation Inference Fuzzy Web Ontology Language (OWL) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dey, A.K.: Providing Architectural Support for Building Context Aware Applications. Georgia Institute of Technology (2000)Google Scholar
  2. 2.
    Stoilos, G., Stamou, G., Pan, J.Z.: Fuzzy Reasoning Extensions. In: Knowledge Web Consortium (2007)Google Scholar
  3. 3.
    Chen, H., Wu, Z.: Semantic Web Meets Computational Intelligence: State of the Art and Perspectives. IEEE Computational Intelligence Magazine 7, 67–74 (2012)Google Scholar
  4. 4.
    Gao, M., Liu, C.: Extending OWL by Fuzzy Description Logic. In: 17th IEEE International Conference on Tools with Artificial Intelligence (2005)Google Scholar
  5. 5.
    Simou, N., Kollias, S.: FiRE: A Fuzzy Reasoning Engine for Impecise Knowledge. In: K-Space PhD Students Workshop (2007)Google Scholar
  6. 6.
    Simou, N., Stoilos, G., Stamou, G.: Storing and Querying Fuzzy Knowledge in the Semantic Web Using FiRE. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 158–176. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Huang, C., Lo, C., Chao, K.: Reaching consensus: A moderated fuzzy web services discovery method. Information and Software Technology 48, 410–423 (2006)CrossRefGoogle Scholar
  8. 8.
    Stoilos, G., Stamou, G., Tzouvaras, V.: The fuzzy description logic f-SHIN. In: Proc. of the International Workshop on Uncertainty Reasoning for the Semantic Web (2005)Google Scholar
  9. 9.
    Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Fuzzy querying over fuzzy-DL-Lite. In: 17th International World-Wide-Web Conference, Beijing (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daehyun Kang
    • 1
    Email author
  • Jongsoo Sohn
    • 2
  • Kyunglag Kwon
    • 1
  • Bok-Gyu Joo
    • 3
  • In-Jeong Chung
    • 1
  1. 1.Department of Computer and Information ScienceKorea UniversitySeoulKorea
  2. 2.Service Strategy Team, Visual DisplaySamsung ElectronicsSuwonKorea
  3. 3.Department of Computer and Information CommunicationsHong-Ik UniversitySeoulKorea

Personalised recommendations