Advertisement

An Efficient Implementation of Geometric Semantic Genetic Programming for Anticoagulation Level Prediction in Pharmacogenetics

  • Mauro Castelli
  • Davide Castaldi
  • Ilaria Giordani
  • Sara Silva
  • Leonardo Vanneschi
  • Francesco Archetti
  • Daniele Maccagnola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8154)

Abstract

The purpose of this study is to develop an innovative system for Coumarin-derived drug dosing, suitable for elderly patients. Recent research highlights that the pharmacological response of the patient is often affected by many exogenous factors other than the dosage prescribed and these factors could form a very complex relationship with the drug dosage. For this reason, new powerful computational tools are needed for approaching this problem. The system we propose is called Geometric Semantic Genetic Programming, and it is based on the use of recently defined geometric semantic genetic operators. In this paper, we present a new implementation of this Genetic Programming system, that allow us to use it for real-life applications in an efficient way, something that was impossible using the original definition. Experimental results show the suitability of the proposed system for managing anticoagulation therapy. In particular, results obtained with Geometric Semantic Genetic Programming are significantly better than the ones produced by standard Genetic Programming both on training and on out-of-sample test data.

Keywords

Root Mean Square Error Random Tree Generalization Ability Semantic Space Oral Anticoagulant Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proc. of the IEEE World Congress on Comput. Intelligence, pp. 111–116. IEEE Press (2008)Google Scholar
  2. 2.
    Capodanno, D., Angiolillo, D.J.: Antithrombotic therapy in the elderly. Journal of the American College of Cardiology 56(21), 1683–1692 (2010)CrossRefGoogle Scholar
  3. 3.
    Anderson Jr., F.A., Wheeler, H.B., Goldberg, R.J., et al.: A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism: The worcester dvt study. Archives of Internal Medicine 151(5), 933–938 (1991)CrossRefGoogle Scholar
  4. 4.
    Fang, M.C., Chen, J., Rich, M.W.: Atrial fibrillation in the elderly. Am. J. Med. 120(6), 481–487 (2007)CrossRefGoogle Scholar
  5. 5.
    Fang, M.C., Machtinger, E.L., Wang, F., Schillinger, D.: Health literacy and anticoagulation-related outcomes among patients taking warfarin. J. Gen. Intern. Med. 21(8), 841–846 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jowett, S., Bryan, S., Poller, L., Van Den Besselaar, A.M.H.P., Van Der Meer, F.J.M., Palareti, G., Shiach, C., Tripodi, A., Keown, M., Ibrahim, S., Lowe, G., Moia, M., Turpie, A.G., Jespersen, J.: The cost-effectiveness of computer-assisted anticoagulant dosage: results from the European action on anticoagulation (eaa) multicentre study. J. Thromb. Haemost. 7(9), 1482–1490 (2009)CrossRefGoogle Scholar
  7. 7.
    Klein, T.E., Altman, R.B., Eriksson, N., Gage, B.F., Kimmel, S.E., Lee, M.-T.M., Limdi, N.A., Page, D., Roden, D.M., Wagner, M.J., Caldwell, M.D., Johnson, J.A.: Estimation of the dose with clinical and pharmacogenetic data. New England Journal of Medicine 360(8), 753–764 (2009)CrossRefGoogle Scholar
  8. 8.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  9. 9.
    Krawiec, K.: Medial crossovers for genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009, July 8-12, pp. 987–994. ACM (2009)Google Scholar
  11. 11.
    Leichsenring, I., Plesch, W., Unkrig, V., Kitchen, S., Kitchen, D.P., Maclean, R., Dikkeschei, B., van den Besselaar, A.M.H.P.: Multicentre isi assignment and calibration of the inr measuring range of a new point-of-care system designed for home monitoring of oral anticoagulation therapy. Thromb. Haemost. 97(5), 856–861 (2007)Google Scholar
  12. 12.
    Martin, B., Filipovic, M., Rennie, L., Shaw, D.: Using machine learning to prescribe warfarin. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS, vol. 6304, pp. 151–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Miners, J.O., Birkett, D.J.: Cytochrome p4502c9: an enzyme of major importance in human drug metabolism. British Journal of Clinical Pharmacology 45(6), 525–538 (1998)CrossRefGoogle Scholar
  15. 15.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Ryan, P.J., Gilbert, M., Rose, P.E.: Computer control of anticoagulant dose for therapeutic management. BMJ 299(6709), 1207–1209 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mauro Castelli
    • 1
    • 2
  • Davide Castaldi
    • 3
  • Ilaria Giordani
    • 5
  • Sara Silva
    • 2
    • 4
  • Leonardo Vanneschi
    • 1
    • 2
    • 3
  • Francesco Archetti
    • 3
    • 5
  • Daniele Maccagnola
    • 3
  1. 1.ISEGIUniversidade Nova de LisboaLisboaPortugal
  2. 2.INESC-ID, ISTUniversidade Técnica de LisboaLisboaPortugal
  3. 3.D.I.S.Co.Università degli Studi di Milano-BicoccaMilanoItaly
  4. 4.CISUCUniversidade de CoimbraCoimbraPortugal
  5. 5.Consorzio Milano RicercheMilanoItaly

Personalised recommendations