Abstract
A binary classification algorithm, called Probabilistic Vector Machine – PVM, is proposed. It is based on statistical measurements of the training data, providing a robust and lightweight classification model with reliable performance. The proposed model is also shown to provide the optimal binary classifier, in terms of probability of error, under a set of loose conditions regarding the data distribution. We compare PVM against GEPSVM and PSVM and provide evidence of superior performance on a number of datasets in terms of average accuracy and standard deviation of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3) (2011)
Chapelle, O., Vapnik, V.N.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2012–2036 (2000)
Chapelle, O., Vapnik, V.N.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2001)
Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)
Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research 6, 1889–1918 (2005)
Frank, R.: The perceptron a perceiving and recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory (1957)
Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 77–86. ACM, New York (2001)
Garg, A., Har-Peled, S., Roth, D.: On generalization bounds, projection profile, and margin distribution. In: ICML 2002 Proceedings of the Nineteenth International Conference on Machine Learning, Sydney, Australia, pp. 171–178. Morgan Kaufmann Publishers Inc. (2002)
Garg, A., Roth, D.: Margin distribution optimization. Computational Imaging and Vision 29, 119–128 (2005)
Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5), 905–910 (2007)
Joachims, T., Ndellec, C., Rouveriol, C.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)
Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. Informatica 31, 3–24 (2007)
Kumar, A.M., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Systems with Applications: An International Journal 36(4), 7535–7543 (2009)
Lee, S., Verri, A.: SVM 2002. LNCS, vol. 2388. Springer, Heidelberg (2002)
Mangasarian, O.L., Wild, W.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(1), 69–74 (2005)
Noble, W.S.: Support vector machine applications in computational biology. In: Kernel Methods in Computational Biology, pp. 71–92 (2004)
Qi, Z., Tian, Y., Shi, Y.: Robust twin support vector machine for pattern classification. Pattern Recognition (June 27, 2012) (accepted)
Vapnik, V.N., Boser, B.E., Guyon, I.: A training algorithm for optimal margin classifiers. In: COLT 1992 Proceedings of the Fifth Annual Workshop on Computational Learning, Pittsburgh, PA, USA, vol. 5, pp. 144–152. ACM, New York (1992)
Vapnik, V.N.: Statistical learning theory. John Wiley and Sons Inc. (1998)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cimpoeşu, M., Sucilă, A., Luchian, H. (2013). A Statistical Binary Classifier: Probabilistic Vector Machine. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-40669-0_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40668-3
Online ISBN: 978-3-642-40669-0
eBook Packages: Computer ScienceComputer Science (R0)