Skip to main content

A Statistical Binary Classifier: Probabilistic Vector Machine

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

  • 2935 Accesses

Abstract

A binary classification algorithm, called Probabilistic Vector Machine – PVM, is proposed. It is based on statistical measurements of the training data, providing a robust and lightweight classification model with reliable performance. The proposed model is also shown to provide the optimal binary classifier, in terms of probability of error, under a set of loose conditions regarding the data distribution. We compare PVM against GEPSVM and PSVM and provide evidence of superior performance on a number of datasets in terms of average accuracy and standard deviation of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  2. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3) (2011)

    Google Scholar 

  3. Chapelle, O., Vapnik, V.N.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2012–2036 (2000)

    Google Scholar 

  4. Chapelle, O., Vapnik, V.N.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2001)

    Google Scholar 

  5. Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research 6, 1889–1918 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Frank, R.: The perceptron a perceiving and recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  8. Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 77–86. ACM, New York (2001)

    Chapter  Google Scholar 

  9. Garg, A., Har-Peled, S., Roth, D.: On generalization bounds, projection profile, and margin distribution. In: ICML 2002 Proceedings of the Nineteenth International Conference on Machine Learning, Sydney, Australia, pp. 171–178. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  10. Garg, A., Roth, D.: Margin distribution optimization. Computational Imaging and Vision 29, 119–128 (2005)

    Article  Google Scholar 

  11. Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5), 905–910 (2007)

    Google Scholar 

  12. Joachims, T., Ndellec, C., Rouveriol, C.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. Informatica 31, 3–24 (2007)

    MathSciNet  Google Scholar 

  14. Kumar, A.M., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Systems with Applications: An International Journal 36(4), 7535–7543 (2009)

    Article  Google Scholar 

  15. Lee, S., Verri, A.: SVM 2002. LNCS, vol. 2388. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  16. Mangasarian, O.L., Wild, W.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(1), 69–74 (2005)

    Article  Google Scholar 

  17. Noble, W.S.: Support vector machine applications in computational biology. In: Kernel Methods in Computational Biology, pp. 71–92 (2004)

    Google Scholar 

  18. Qi, Z., Tian, Y., Shi, Y.: Robust twin support vector machine for pattern classification. Pattern Recognition (June 27, 2012) (accepted)

    Google Scholar 

  19. Vapnik, V.N., Boser, B.E., Guyon, I.: A training algorithm for optimal margin classifiers. In: COLT 1992 Proceedings of the Fifth Annual Workshop on Computational Learning, Pittsburgh, PA, USA, vol. 5, pp. 144–152. ACM, New York (1992)

    Google Scholar 

  20. Vapnik, V.N.: Statistical learning theory. John Wiley and Sons Inc. (1998)

    Google Scholar 

  21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cimpoeşu, M., Sucilă, A., Luchian, H. (2013). A Statistical Binary Classifier: Probabilistic Vector Machine. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics