Skip to main content

On Sets of Numbers Rationally Represented in a Rational Base Number System

  • Conference paper
Algebraic Informatics (CAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8080))

Included in the following conference series:

Abstract

In this work, it is proved that a set of numbers closed under addition and whose representations in a rational base numeration system is a rational language is not a finitely generated additive monoid.

A key to the proof is the definition of a strong combinatorial property on languages : the bounded left iteration property. It is both an unnatural property in usual formal language theory (as it contradicts any kind of pumping lemma) and an ideal fit to the languages defined through rational base number systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and rational base number systems. Israel J. Math. 168, 53–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Autebert, J.M., Beauquier, J., Boasson, L., Latteux, M.: Indécidabilité de la condition IRS. ITA 16(2), 129–138 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 34–107. Cambridge Univ. Press (2010)

    Google Scholar 

  4. Greibach, S.A.: One counter languages and the IRS condition. J. Comput. Syst. Sci. 10(2), 237–247 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley (2000)

    Google Scholar 

  6. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 108–162. Cambridge Univ. Press (2010)

    Google Scholar 

  7. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press (2002)

    Google Scholar 

  8. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009); Corrected English translation of Éléments de théorie des automates, Vuibert (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marsault, V., Sakarovitch, J. (2013). On Sets of Numbers Rationally Represented in a Rational Base Number System. In: Muntean, T., Poulakis, D., Rolland, R. (eds) Algebraic Informatics. CAI 2013. Lecture Notes in Computer Science, vol 8080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40663-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40663-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40662-1

  • Online ISBN: 978-3-642-40663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics