Bin Packing with Linear Usage Costs – An Application to Energy Management in Data Centres

  • Hadrien Cambazard
  • Deepak Mehta
  • Barry O’Sullivan
  • Helmut Simonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


EnergeTIC is a recent industrial research project carried out in Grenoble on optimizing energy consumption in data-centres. The efficient management of a data-centre involves minimizing energy costs while ensuring service quality. We study the problem formulation proposed by EnergeTIC. First, we focus on a key sub-problem: a bin packing problem with linear costs associated with the use of bins. We study lower bounds based on Linear Programming and extend the bin packing global constraint with cost information. Second, we present a column generation model for computing the lower bound on the original energy management problem where the pricing problem is essentially a cost-aware bin packing with side constraints. Third, we show that the industrial benchmark provided so far can be solved to near optimality using a large neighborhood search.


Virtual Machine Constraint Programming Global Constraint Price Problem Linear Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A framework for data center energy productivity. Technical report, The green grid (2008)Google Scholar
  2. 2.
    Efficience des Data Centers, les retombées du projet EnergeTIC. Technical report (2013),
  3. 3.
    Anily, S., Bramel, J., Simchi-Levi, D.: Worst-case analysis of heuristics for the bin packing problem with general cost structures. Operational Research 42 (1994)Google Scholar
  4. 4.
    Baldi, M.M., Crainic, T.G., Perboli, G., Tadei, R.: The generalized bin packing problem. Transportation Research Part E: Logistics and Transportation Review 48(6), 1205–1220 (2012)CrossRefGoogle Scholar
  5. 5.
    Crainic, T.G., Perboli, G., Rei, W., Tadei, R.: Efficient lower bounds and heuristics for the variable cost and size bin packing problem. Comput. Oper. Res. 38(11), 1474–1482 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    de Carvalho, J.M.V.: Exact solution of bin packing problems using column generation and branch-and-bound. Annals of Operations Research 86(0), 629–659 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Carvalho, J.M.V.: LP models for bin packing and cutting stock problems. European Journal of Operational Research 141(2), 253–273 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dupont, C., Schulze, T., Giuliani, G., Somov, A., Hermenier, F.: An energy aware framework for virtual machine placement in cloud federated data centres. In: Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet, e-Energy 2012, pp. 4:1–4:10. ACM, New York (2012)Google Scholar
  9. 9.
    Epstein, L., Levin, A.: Bin packing with general cost structures. Math. Program. 132(1-2), 355–391 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Operations research 11, 863–888 (1963)CrossRefzbMATHGoogle Scholar
  11. 11.
    Haouari, M., Serairi, M.: Relaxations and exact solution of the variable sized bin packing problem. Comput. Optim. Appl. 48(2), 345–368 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, C.L., Chen, Z.L.: Bin-packing problem with concave costs of bin utilization. Naval Research Logistics 53, 298–308 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics 28(1), 59–70 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Monaci, M.: Algorithms for Packing and Scheduling Problems. PhD thesis, Universit di Bologna (2012)Google Scholar
  16. 16.
    Petrucci, V., Loques, O., Mosse, D.: A dynamic configuration model for power-efficient virtualized server clusters. In: Proceedings of the 11th Brazilian Workshop on Real-Time and Embedded Systems (2009)Google Scholar
  17. 17.
    Rothvoss, T.: Approximating bin packing within \(\mathcal{O}\)(logOPT·loglogOPT) bins. Technical report, MIT (2013)Google Scholar
  18. 18.
    Salvagnin, D.: Orbital shrinking: A new tool for hybrid MIP/CP methods. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 204–215. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of HotPower (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hadrien Cambazard
    • 1
    • 2
  • Deepak Mehta
    • 3
  • Barry O’Sullivan
    • 3
  • Helmut Simonis
    • 3
  1. 1.G-SCOP, Université de Grenoble, Grenoble INPFrance
  2. 2.CNRSUJF Grenoble 1France
  3. 3.Cork Constraint Computation CentreUniversity College CorkIreland

Personalised recommendations