Atom Mapping with Constraint Programming

  • Martin Mann
  • Feras Nahar
  • Heinz Ekker
  • Rolf Backofen
  • Peter F. Stadler
  • Christoph Flamm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

Chemical reactions consist of a rearrangement of bonds so that each atom in an educt molecule appears again in a specific position of a reaction product. In general this bijection between educt and product atoms is not reported by chemical reaction databases, leaving the Atom Mapping Problem as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T.: Efficient extraction of mapping rules of atoms from enzymatic reaction data. J. Comp. Biol. 11, 449–462 (2004)CrossRefGoogle Scholar
  2. 2.
    Apostolakis, J., Sacher, O., Körner, R., Gasteiger, J.: Automatic determination of reaction mappings and reaction center information. 2. Validation on a biochemical reaction database. J. Chem. Inf. Mod. 48, 1190–1198 (2008)CrossRefGoogle Scholar
  3. 3.
    Arita, M.: Scale-freeness and biological networks. J. Biochem 138, 1–4 (2005)CrossRefGoogle Scholar
  4. 4.
    Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Constraints 7(3), 333–349 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bahiense, L., Manić, G., Piva, B., de Souza, C.C.: The maximum common edge subgraph problem: A polyhedral investigation. Discr. Appl. Math. 160, 2523–2541 (2012)CrossRefMATHGoogle Scholar
  7. 7.
    Blum, T., Kohlbacher, O.: Using atom mapping rules for an improved detection of relevant routes in weighted metabolic networks. Journal of Computational Biology 15, 565–576 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, W.L., Chen, D.Z., Taylor, K.T.: Automatic reaction mapping and reaction center detection. WIREs Comput. Mol. Sci. (2013)Google Scholar
  9. 9.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the VF graph matching algorithm. In: Proceedings of the 10th International Conference on Image Analysis and Processing, ICIAP 1999, p. 1172. IEEE Computer Society Press (1999)Google Scholar
  10. 10.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  11. 11.
    Crabtree, J.D., Mehta, D.P.: Automated reaction mapping. J. Exp. Algor. 13, 1.15–1.29 (2009)Google Scholar
  12. 12.
    Crabtree, J.D., Mehta, D.P., Kouri, T.M.: An open-source Java platform for automated reaction mapping. J. Chem. Inf. Model. 50, 1751–1756 (2010)CrossRefGoogle Scholar
  13. 13.
    de Groot, M.J.L., van Berlo, R.J.P., van Winden, W.A., Verheijen, P.J.T., Reinders, M.J.T., de Ridder, D.: Metabolite and reaction inference based on enzyme specificities. Bioinformatics 25(22), 83–2975 (2009)CrossRefGoogle Scholar
  14. 14.
    Dugundji, J., Ugi, I.: An algebraic model of constitutional chemistry as a basis for chemical computer programs. Topics Cur. Chem. 39, 19–64 (1973)Google Scholar
  15. 15.
    Ehrlich, H.-C., Rarey, M.: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review. WIREs Comput. Mol. Sci. (2011)Google Scholar
  16. 16.
    First, E.L., Gounaris, C.E., Floudas, C.A.: Stereochemically consistent reaction mapping and identification of multiple reaction mechanisms through integer linear optimization. J. Chem. Inf. Model. 52(1), 84–92 (2012)CrossRefGoogle Scholar
  17. 17.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts. J. Chem. Inf. Comput. Sci. 26, 205–212 (1986)CrossRefGoogle Scholar
  18. 18.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. 2. Classification of one-string reactions having an even-membered cyclic reaction graph. J. Chem. Inf. Comput. Sci. 26, 212–223 (1986)CrossRefGoogle Scholar
  19. 19.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. 3. Classification of one-string reactions having an odd-membered cyclic reaction graph. J. Chem. Inf. Comput. Sci. 26, 224–230 (1986)CrossRefGoogle Scholar
  20. 20.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. 5. Recombination of reaction strings in a synthesis space and its application to the description of synthetic pathways. J. Chem. Inf. Comput. Sci. 26, 238–242 (1986)CrossRefGoogle Scholar
  21. 21.
    Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Proceedings of ECAI-2000, pp. 599–603. IOS Press (2000)Google Scholar
  22. 22.
    Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Heuristics for chemical compound matching. Genome Informatics 14, 144–153 (2003)Google Scholar
  23. 23.
    Heinonen, M., Lappalainen, S., Mielikäinen, T., Rousu, J.: Computing atom mappings for biochemical reactions without subgraph isomorphism. J. Comp. Biol. 18, 43–58 (2011)CrossRefGoogle Scholar
  24. 24.
    Hendrickson, J.B.: Comprehensive system for classification and nomenclature of organic reactions. J. Chem. Inf. Comput. Sci. 37, 852–860 (1997)CrossRefGoogle Scholar
  25. 25.
    Herges, R.: Organizing principle of complex reactions and theory of coarctate transition states. Angewandte Chemie Int. Ed. 33, 255–276 (1994)CrossRefGoogle Scholar
  26. 26.
    Hogiri, T., Furusawaa, C., Shinfukua, Y., Onoa, N., Shimizua, H.: Analysis of metabolic network based on conservation of molecular structure. Biosystems 95(3), 175–178 (2009)CrossRefGoogle Scholar
  27. 27.
    Huang, X., Lai, J., Jennings, S.F.: Maximum common subgraph: some upper bound and lower bound results. BMC Bioinformatics 7 (S4), S6 (2006)Google Scholar
  28. 28.
    Jochum, C., Gasteiger, J., Ugi, I.: The principle of minimum chemical distance (PMCD). Angew. Chem. Int. Ed. 19, 495–505 (1980)CrossRefGoogle Scholar
  29. 29.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration and interpretation of large-scale molecular data sets. Nuc. Acids Res. 40(Database issue), D109–D114 (2012)Google Scholar
  30. 30.
    Körner, R., Apostolakis, J.: Automatic determination of reaction mappings and reaction center information. 1. The imaginary transition state energy approach. J. Chem. Inf. Mod. 48, 1181–1189 (2008)CrossRefGoogle Scholar
  31. 31.
    Kotera, M., Okuno, Y., Hattori, M., Goto, S., Kanehisa, M.: Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J. Am. Chem. Soc. 126, 16487–16498 (2004)CrossRefGoogle Scholar
  32. 32.
    Latendresse, M., Malerich, J.P., Travers, M., Karp, P.D.: Accurate atom-mapping computation for biochemical reactions. J. Chem. Inf. Model (2013)Google Scholar
  33. 33.
    Leber, M., Egelhofer, V., Schomburg, I., Schomburg, D.: Automatic assignment of reaction operators to enzymatic reactions. Bioinformatics 25, 3135–3142 (2009)CrossRefGoogle Scholar
  34. 34.
    Lynch, M., Willett, P.: The automatic detection of chemical reaction sites. Journal of Chemical Information and Computer Sciences 18, 154–159 (1978)CrossRefGoogle Scholar
  35. 35.
    Mann, M., Ekker, H., Flamm, C.: The graph grammar library - A generic framework for chemical graph rewrite systems. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 52–53. Springer, Heidelberg (2013), http://arxiv.org/abs/1304.1356 CrossRefGoogle Scholar
  36. 36.
    Mann, M., Ekker, H., Stadler, P.F., Flamm, C.: Atom mapping with constraint programming. In: Backofen, R., Will, S. (eds.) Proceedings of the Workshop on Constraint Based Methods for Bioinformatics WCB12, Freiburg, pp. 23–29. Uni Freiburg (2012), http://www.bioinf.uni-freiburg.de/Events/WCB12/proceedings.pdf
  37. 37.
    Mears, C.D., Garcia De La Banda, M.J., Demoen, B., Wallace, M.: Lightweight dynamic symmetry breaking. In: Proc. of the 8th International Workshop on Symmetry in CSPs, SymCon 2008 (2008), http://www.aloul.net/symcon/
  38. 38.
    Meisenheimer, J.: Über eine eigenartige Umlagerung des Methyl-allyl-anilin-N-oxyds. Chemische Berichte 52, 1667–1677 (1919)CrossRefGoogle Scholar
  39. 39.
    Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., Savolainen, J.: Prodrugs: design and clinical applications. Nature Reviews Drug Discovery 7(3), 255–270 (2008)CrossRefGoogle Scholar
  40. 40.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Computer-Aided Mol. Design 16, 33–521 (2002)Google Scholar
  41. 41.
    Regin, J.-C.: A filtering algorithm for constraints of difference. In: Proceedings of the 12th National Conference of the American Association for Artificial Intelligence, pp. 362–367 (1994)Google Scholar
  42. 42.
    Gecode Team. Gecode: Generic constraint development environment (2013), http://www.gecode.org, Available as an open-source library, from
  43. 43.
    Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comp. Sci. 28(1), 31–36 (1988)CrossRefGoogle Scholar
  44. 44.
    Wiechert, W.: C 13 metabolic flux analysis. Meta. Eng. 3, 195–206 (2001)CrossRefGoogle Scholar
  45. 45.
    Yamanishi, Y., Hattori, M., Kotera, M., Goto, S., Kanehisa, M.: E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics 25(12), i179–i186 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Mann
    • 1
  • Feras Nahar
    • 1
  • Heinz Ekker
    • 5
  • Rolf Backofen
    • 1
    • 2
    • 3
    • 4
  • Peter F. Stadler
    • 5
    • 6
    • 7
    • 8
    • 9
  • Christoph Flamm
    • 5
  1. 1.Bioinformatics, Department for Computer ScienceUniversity of FreiburgFreiburgGermany
  2. 2.Centre for Biological Signalling Studies (BIOSS)University of FreiburgGermany
  3. 3.Centre for Biological Systems Analysis (ZBSA)University of FreiburgGermany
  4. 4.Center for non-coding RNA in Technology and HealthUniversity of CopenhagenDenmark
  5. 5.Institute for Theoretical ChemistryUniversity of ViennaViennaAustria
  6. 6.Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany
  7. 7.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  8. 8.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  9. 9.Santa Fe InstituteSanta FeUSA

Personalised recommendations