Advertisement

Lifting Structural Tractability to CSP with Global Constraints

  • Evgenij Thorstensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

A wide range of problems can be modelled as constraint satisfaction problems (CSPs), that is, a set of constraints that must be satisfied simultaneously. Constraints can either be represented extensionally, by explicitly listing allowed combinations of values, or implicitly, by special-purpose algorithms provided by a solver. Such implicitly represented constraints, known as global constraints, are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems.

In recent years, a variety of restrictions on the structure of CSP instances that yield tractable classes have been identified. However, many such restrictions fail to guarantee tractability for CSPs with global constraints. In this paper, we investigate the properties of extensionally represented constraints that these restrictions exploit to achieve tractability, and show that there are large classes of global constraints that also possess these properties. This allows us to lift these restrictions to the global case, and identify new tractable classes of CSPs with global constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I.: Width Functions for Hypertree Decompositions. Doctoral dissertation, Albert-Ludwigs-Universität Freiburg (2006)Google Scholar
  2. 2.
    Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A., Thorstensen, E.: Optimization methods for the partner units problem. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 4–19. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E.: Structural decomposition methods and what they are good for. In: Schwentick, T., Dürr, C. (eds.) Proc. STACS 2011. LIPIcs, vol. 9, pp. 12–28 (2011)Google Scholar
  4. 4.
    Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of reasoning with global constraints. Constraints 12(2), 239–259 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decomposition of the nValue constraint. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 114–128. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, H., Grohe, M.: Constraint satisfaction with succinctly specified relations. Journal of Computer and System Sciences 76(8), 847–860 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. Journal of Computer and System Sciences 74(5), 721–743 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen, D.A., Green, M.J., Houghton, C.: Constraint representations and structural tractability. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 289–303. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer (2006)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  14. 14.
    Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Gent, I.P., Jefferson, C., Miguel, I.: MINION: A fast, scalable constraint solver. In: Proc. ECAI 2006, pp. 98–102. IOS Press (2006)Google Scholar
  16. 16.
    Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artificial Intelligence 124(2), 243–282 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Green, M.J., Jefferson, C.: Structural tractability of propagated constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 372–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54(1), 1–24 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. SODA 2006, pp. 289–298. ACM (2006)Google Scholar
  21. 21.
    Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 169–208. Elsevier (2006)Google Scholar
  23. 23.
    Kutz, M., Elbassioni, K., Katriel, I., Mahajan, M.: Simultaneous matchings: Hardness and approximation. Journal of Computer and System Sciences 74(5), 884–897 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries. CoRR abs/0911.0801 (2009)Google Scholar
  25. 25.
    Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In: Proc. STOC 2010, pp. 735–744. ACM (2010)Google Scholar
  26. 26.
    Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proc. AAAI 1996, pp. 209–215. AAAI Press (1996)Google Scholar
  28. 28.
    Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  29. 29.
    Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. Constraints 16(1), 1–24 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wallace, M.: Practical applications of constraint programming. Constraints 1, 139–168 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wallace, M., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic programming. ICL Systems Journal 12(1), 137–158 (1997)Google Scholar
  32. 32.
    Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proc. IJCAI 2003, pp. 1173–1178 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evgenij Thorstensen
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations