Advertisement

Multi-Objective Large Neighborhood Search

  • Pierre Schaus
  • Renaud Hartert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

Large neighborhood search (LNS) [25] is a framework that combines the expressiveness of constraint programming with the efficiency of local search to solve combinatorial optimization problems. This paper introduces an extension of LNS, called multi-objective LNS (MO-LNS), to solve multi-objective combinatorial optimization problems ubiquitous in practice. The idea of MO-LNS is to maintain a set of nondominated solutions rather than just one best-so-far solution. At each iteration, one of these solutions is selected, relaxed and optimized in order to strictly improve the hypervolume of the maintained set of nondominated solutions. We introduce modeling abstractions into the OscaR solver for MO-LNS and show experimentally the efficiency of this approach on various multi-objective combinatorial optimization problems.

Keywords

Constraint Programming Multi-Objective Combinatorial Optimization Large Neighborhood Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A., Jain, L.: Evolutionary multiobjective optimization. Evolutionary Multiobjective Optimization (2005)Google Scholar
  2. 2.
    Christopher Beck, J.: Solution-guided multi-point constructive search for job shop scheduling. J. Artif. Int. Res. 29(1), 49–77 (2007)Google Scholar
  3. 3.
    Bent, R., Hentenryck, P.V.: A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Computers & Operations Research 33(4), 875–893 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-2. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)CrossRefGoogle Scholar
  7. 7.
    Ehrgott, M.: Multicriteria optimization, vol. 2. Springer, Berlin (2005)zbMATHGoogle Scholar
  8. 8.
    Ehrgott, M., Gandibleux, X.: Hybrid metaheuristics for multi-objective combinatorial optimization. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid metaheuristics. SCI, vol. 114, pp. 221–259. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gavanelli, M.: An algorithm for multi-criteria optimization in csps. ECAI 2, 136–140 (2002)Google Scholar
  10. 10.
    Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics 1(3), 296–297 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Van, P., Van Hentenryck, P., Michel, L.: Nondeterministic control for hybrid search. Michel 11(4), 353–373 (2006)zbMATHGoogle Scholar
  12. 12.
    Knowles, J.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. Soft Computing Systems: Design, Management and Applications 2002, 271–279 (2002)Google Scholar
  13. 13.
    Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Laborie, P., Godard, D.: Self-adapting large neighborhood search: Application to single-mode scheduling problems. In: Proceedings MISTA 2007, Paris, pp. 276–284 (2007)Google Scholar
  15. 15.
    Mairy, J.-B., Deville, Y., Van Hentenryck, P.: Reinforced adaptive large neighborhood search. In: 8th Workshop on Local Search techniques in Constraint Satisfaction (LSCS 2011). A Satellite Workshop of CP, Perugia, Italy (2011)Google Scholar
  16. 16.
    Mairy, J.-B., Schaus, P., Deville, Y.: Generic adaptive heuristics for large neighborhood search. In: Seventh International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS 2010). A Satellite Workshop of CP (2010)Google Scholar
  17. 17.
    Timothy Marler, R., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26(6), 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Michel, L., Shvartsman, A., Sonderegger, E., Van Hentenryck, P.: Optimal deployment of eventually-serializable data services. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 188–202 (2008)Google Scholar
  20. 20.
    OscaR Team. OscaR: Scala in OR (2012), https://bitbucket.org/oscarlib/oscar.
  21. 21.
    Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive randomized decompositions for flexible jobshop scheduling. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3, pp. 1997–2002. AAAI Press (2011)Google Scholar
  22. 22.
    Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Schaus, P., Van Hentenryck, P., Monette, J.N., Coffrin, C., Michel, L., Deville, Y.: Solving steel mill slab problems with constraint-based techniques: Cp, lns, and cbls. Constraints 16(2), 125–147 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schaus, P., Régin, J.-C., Van Schaeren, R., Dullaert, W., Raa, B.: Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 815–822. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis 3(2), 83–104 (1994)CrossRefzbMATHGoogle Scholar
  27. 27.
    Van Wassenhove, L.N., Gelders, L.F.: Solving a bicriterion scheduling problem. European Journal of Operations Research 4, 42–48 (1980)CrossRefGoogle Scholar
  28. 28.
    Gandibleux, X.: A collection of test instances for multiobjective combinatorial optimization problems (2013), http://xgandibleux.free.fr/MOCOlib/
  29. 29.
    Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm (2001)Google Scholar
  30. 30.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierre Schaus
    • 1
  • Renaud Hartert
    • 1
  1. 1.ICTEAMUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations