Time-Table Extended-Edge-Finding for the Cumulative Constraint

  • Pierre Ouellet
  • Claude-Guy Quimper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


We propose a new filtering algorithm for the cumulative constraint. It applies the Edge-Finding, the Extended-Edge-Finding and the Time-Tabling rules in O(k nlogn) where k is the number of distinct task heights. By a proper use of tasks decomposition, it enforces the Time-Tabling rule and the Time-Table Extended-Edge-Finding rule. Thus our algorithm improves upon the best known Extended-Edge-Finding propagator by a factor of O(logn) while achieving a much stronger filtering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schutt, A., Wolf, A.: A new \({\mathcal o}(n^2\log n)\) not-first/Not-last pruning algorithm for cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 445–459. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling 17(7) (1993)Google Scholar
  3. 3.
    Baptiste, P., Pape, C.L.: Constraint propagation techniques for disjunctive scheduling: The preemptive case. In: Proceedings of the 12th European Conference on Artificial Intelligence, ECAI 1996 (1996)Google Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the [Equation image] constraint in the context of non-overlapping rectangles. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 21–35. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 63–79. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Vilím, P.: Edge finding filtering algorithm for discrete cumulative resources in \({\mathcal o}(kn {\rm log} n)\). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding filtering algorithm for cumulative resource constraints. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 478–492. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. INFORMS Journal on Computing 20(1), 143–153 (2008)Google Scholar
  9. 9.
    Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Publishers (2001)Google Scholar
  10. 10.
    Vilím, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Nuijten, W.: Time and Resource Constrained Scheduling. PhD thesis, Eindhoven University of Technology (1994)Google Scholar
  13. 13.
    Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative constraint. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 439–454. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Vilím, P.: O(n logn) filtering algorithms for unary reource constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 335–347. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Vilím, P.: Max energy filtering algorithm for discrete cumulative resources. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 294–308. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Kolisch, R., Sprecher, A.: Psplib - a project scheduling library. European Journal of Operational Research 96, 205–216 (1996), Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierre Ouellet
    • 1
  • Claude-Guy Quimper
    • 1
  1. 1.Université LavalCanada

Personalised recommendations