Advertisement

Abstract

Multidimensional bin packing is a challenging combinatorial problem with applications to cloud computing, virtualized datacenters, and machine reassignment. In contrast to the classical bin packing model, item sizes and bin capacities both span a vector of values, requiring that feasible assignments honor capacity constraints across all dimensions. Recent work has yielded significant improvements over traditional CP and MIP encodings by incorporating multivalued decision diagrams (MDDs) into a heuristic-driven CSP-based search. In this paper, we consider a radically different approach to multidimensional bin packing, in which the complete contents of bins are considered sequentially and independently. Our algorithm remains depth-first, yet adopts a powerful least commitment strategy for items when their exclusion from a bin is attempted. We abandon the use of MDDs, and instead aggregate capacity over incomplete bins to establish significantly stronger bounds on the solution quality of a partial assignment. Empirical results demonstrate that our approach outperforms the state-of-the-art by up to four orders of magnitude, and can even solve some previously intractable problems within a fraction of a second.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithms for multidimensional bin packing problems. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 697–708 (2006)Google Scholar
  2. 2.
    Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: Disjoint, partition and intersection constraints for set and multiset variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 138–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bodirsky, M., Hils, M., Krimkevitch, A.: Tractable set constraints. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 510–515 (2011)Google Scholar
  6. 6.
    Cambazard, H., O’Sullivan, B.: Propagating the bin packing constraint using linear programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 129–136. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Castiñeiras, I., De Cauwer, M., O’Sullivan, B.: Weibull-based benchmarks for bin packing. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 207–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Cazenave, T.: Nested monte-carlo search. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 456–461 (2009)Google Scholar
  9. 9.
    Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4), 837–851 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Forrest, J.J.H., Kalagnanam, J., Ladányi, L.: A column-generation approach to the multiple knapsack problem with color constraints. INFORMS Journal on Computing 18(1), 129–134 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fukunaga, A.S., Korf, R.E.: Bin completion algorithms for multicontainer packing, knapsack, and covering problems. J. Artif. Intell. Res (JAIR) 28, 393–429 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design problem. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gent, I.P., Walsh, T.: From approximate to optimal solutions: Constructing pruning and propagation rules. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1396–1401 (1997)Google Scholar
  14. 14.
    Gervet, C.: Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints 1(3), 191–244 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heinz, S., Schlechte, T., Stephan, R., Winkler, M.: Solving steel mill slab design problems. Constraints 17(1), 39–50 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Kell, B., van Hoeve, W.-J.: An MDD approach to multidimensional bin packing. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 128–143. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Kitching, M., Bacchus, F.: Set branching in constraint optimization. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 532–537 (2009)Google Scholar
  20. 20.
    Korf, R.E.: A new algorithm for optimal bin packing. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 731–736 (2002)Google Scholar
  21. 21.
    Korf, R.E.: An improved algorithm for optimal bin packing. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1252–1258 (2003)Google Scholar
  22. 22.
    Korf, R.E.: Multi-way number partitioning. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 538–543 (2009)Google Scholar
  23. 23.
    Korf, R.E.: A hybrid recursive multi-way number partitioning algorithm. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 591–596 (2011)Google Scholar
  24. 24.
    Kou, L.T., Markowsky, G.: Multidimensional bin packing algorithms. IBM Journal of Research and Development 21(5), 443–448 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. European Journal of Operational Research 141(2), 241–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lodi, A., Martello, S., Vigo, D.: Heuristic algorithms for the three-dimensional bin packing problem. European Journal of Operational Research 141(2), 410–420 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics 28(1), 59–70 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Moffitt, M.D.: Search strategies for optimal multi-way number partitioning. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp.623–629 (2013)Google Scholar
  29. 29.
    Sellmann, M., Hentenryck, P.V.: Structural symmetry breaking. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 298–303 (2005)Google Scholar
  30. 30.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Shaw, P.: IBM ILOG CP Optimizer, CPAIOR, Masterclass (2009)Google Scholar
  32. 32.
    van Hoeve, W.-J., Sabharwal, A.: Filtering atmost1 on pairs of set variables. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 382–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Walsh, T.: Consistency and propagation with multiset constraints: A formal viewpoint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 724–738. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael D. Moffitt
    • 1
  1. 1.IBM Corp.USA

Personalised recommendations