Skip to main content

Solving QBF with Free Variables

  • Conference paper
Principles and Practice of Constraint Programming (CP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8124))

Abstract

An open quantified boolean formula (QBF) is a QBF that contains free (unquantified) variables. A solution to such a QBF is a quantifier-free formula that is logically equivalent to the given QBF. Although most recent QBF research has focused on closed QBF, there are a number of interesting applications that require one to consider formulas with free variables. This article shows how clause/cube learning for DPLL-based closed-QBF solvers can be extended to solve QBFs with free variables. We do this by introducing sequents that generalize clauses and cubes and allow learning facts of the form “under a certain class of assignments, the input formula is logically equivalent to a certain quantifier-free formula”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ Heel of QBF. In: AAAI 2005 (2005)

    Google Scholar 

  2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)

    Article  Google Scholar 

  3. Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF Solving by Computational Learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 370–384. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and Perspectives. In: JSAT (2008)

    Google Scholar 

  6. Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 100(8), 677–691 (1986)

    Article  Google Scholar 

  8. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artif. Intell. Res (JAIR) 17, 229–264 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gent, I.P., Giunchiglia, E., Narizzano, M., Rowley, A.G.D., Tacchella, A.: Watched Data Structures for QBF Solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Goldberg, E., Manolios, P.: Quantifier elimination by Dependency Sequents. In: FMCAD, pp. 34–43. IEEE (2012)

    Google Scholar 

  12. Goultiaeva, A., Bacchus, F.: Exploiting QBF Duality on a Circuit Representation. In: AAAI (2010)

    Google Scholar 

  13. Huang, J., Darwiche, A.: Using DPLL for Efficient OBDD Construction. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 157–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A Non-prenex, Non-clausal QBF Solver with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001 (2001)

    Google Scholar 

  17. Shannon, C.E.: The Synthesis of Two Terminal Switching Circuits. Bell System Technical Journal 28, 59–98 (1949)

    Article  MathSciNet  Google Scholar 

  18. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: ICCAD, pp. 220–227 (1996)

    Google Scholar 

  19. Stallman, R.M., Sussman, G.J.: Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis. Artif. Intell. 9(2), 135–196 (1977)

    Article  MATH  Google Scholar 

  20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic 2(115-125), 10–13 (1968)

    Google Scholar 

  21. Wille, R., Fey, G., Drechsler, R.: Building free binary decision diagrams using SAT solvers. Facta Universitatis-series: Electronics and Energetics (2007)

    Google Scholar 

  22. Zhang, L.: Solving QBF by Combining Conjunctive and Disjunctive Normal Forms. In: AAAI 2006 (2006)

    Google Scholar 

  23. Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean Satisfiability Solver. In: ICCAD 2002 (2002)

    Google Scholar 

  24. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klieber, W., Janota, M., Marques-Silva, J., Clarke, E. (2013). Solving QBF with Free Variables. In: Schulte, C. (eds) Principles and Practice of Constraint Programming. CP 2013. Lecture Notes in Computer Science, vol 8124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40627-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40627-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40626-3

  • Online ISBN: 978-3-642-40627-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics