Maintaining Soft Arc Consistencies in BnB-ADOPT +  during Search

  • Patricia Gutierrez
  • Jimmy H. M. Lee
  • Ka Man Lei
  • Terrence W. K. Mak
  • Pedro Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


Gutierrez and Meseguer show how to enforce consistency in BnB-ADOPT +  for distributed constraint optimization, but they consider unconditional deletions only. However, during search, more values can be pruned conditionally according to variable instantiations that define subproblems. Enforcing consistency in these subproblems can cause further search space reduction. We introduce efficient methods to maintain soft arc consistencies in every subproblem during search, a non trivial task due to asynchronicity and induced overheads. Experimental results show substantial benefits on three different benchmarks.


Cost Function Variable Assignment Conditional Deletion Cost Message Unary Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In: Proc. AAMAS 2004, pp. 310–317 (2004)Google Scholar
  2. 2.
    Jain, M., Taylor, M., Tambe, M., Yokoo, M.: DCOPs meet the realworld: exploring unknown reward matrices with applications to mobile sensor networks. In: Proc. IJCAI 2009, pp. 181–186 (2009)Google Scholar
  3. 3.
    Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: Proc. AAMAS 2008, pp. 599–606 (2008)Google Scholar
  4. 4.
    Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161, 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proc. IJCAI 2005, pp. 266–271 (2005)Google Scholar
  6. 6.
    Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. JAIR 38, 85–133 (2010)zbMATHGoogle Scholar
  7. 7.
    Chechetka, A., Sycara, K.: No-commitment branch and bound search for distributed constraint optimization. In: Proc. AAMAS 2006, pp. 1427–1429 (2006)Google Scholar
  8. 8.
    Gutierrez, P., Meseguer, P.: BnB-ADOPT +  with several soft arc consistency levels. In: Proc. ECAI 2010, pp. 67–72 (2010)Google Scholar
  9. 9.
    Gutierrez, P., Meseguer, P.: Saving redundant messages in BnB-ADOPT. In: Proc. AAAI 2010, pp. 1259–1260 (2010)Google Scholar
  10. 10.
    Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP. In: Proc. IJCAI 2003, pp. 239–244 (2003)Google Scholar
  11. 11.
    Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Artificial Intelligence 159(1), 1–26 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gutierrez, P., Meseguer, P.: Improving BnB-ADOPT + -AC. In: Proc. AAMAS 2012, pp. 273–280 (2012)Google Scholar
  13. 13.
    Cabon, B., Givry, S.D., Lobjois, L., Fcabon, L.L., Schiex, T.: Radio link frequency assignment. Constraints 4, 79–89 (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. IJCAI 2005, pp. 84–89 (2005)Google Scholar
  15. 15.
    Gutierrez, P., Meseguer, P.: Enforcing soft local consistency on multiple representations for DCOP solving. In: CP 2010, Workshop: Preferences and Soft Constraints, pp. 98–113 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patricia Gutierrez
    • 1
  • Jimmy H. M. Lee
    • 2
  • Ka Man Lei
    • 2
  • Terrence W. K. Mak
    • 3
  • Pedro Meseguer
    • 1
  1. 1.IIIA - CSICUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of Computer Science and EngineeringThe Chinese University of Hong KongShatinHong Kong
  3. 3.NICTA Victoria Laboratory & University of MelbourneAustralia

Personalised recommendations