A Simple and Effective Decomposition for the Multidimensional Binpacking Constraint

  • Stefano Gualandi
  • Michele Lombardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)


The multibin_packing constraint captures a fundamental substructure of many assignment problems, where a set of items, each with a fixed number of dimensions, must be assigned to a number of bins with limited capacities. In this work we propose a simple decomposition for multibin_packing that uses a bin_packing constraint for each dimension, a set of all_different constraints automatically derived from a conflict graph, plus two alternative symmetry breaking approaches. Despite its simplicity, the proposed decomposition is very effective on a number of instances recently proposed in the literature.


Maximal Clique Average Computation Time Hard Instance Simple Decomposition Load Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. SICS Research Report (2005)Google Scholar
  2. 2.
    Kell, B., van Hoeve, W.-J.: An MDD approach to multidimensional bin packing. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 128–143. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, New York (1979)MATHGoogle Scholar
  4. 4.
    Gecode Team. Gecode: Generic constraint development environment (2013), http://www.gecode.org
  5. 5.
    Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc. (1990)Google Scholar
  6. 6.
    Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120(1), 197–207 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier Science (2006)Google Scholar
  9. 9.
    Schaus, P., Régin, J.-C., Van Schaeren, R., Dullaert, W., Raa, B.: Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 815–822. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. Annals of Operations Research 118(1), 73–84 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefano Gualandi
    • 1
  • Michele Lombardi
    • 2
  1. 1.Dipartimento di MatematicaUniversità di PaviaItaly
  2. 2.Dipartimento di Informatica: Scienza ed IngegneriaUniversità di BolognaItaly

Personalised recommendations