In many scheduling and resource assignment problems, it is necessary to find a solution which is as similar as possible to a given, initial assignment. We propose a new algorithm for this minimal perturbation problem which searches a space of variable commitments and uses a lower bound function based on the minimal vertex covering of a constraint violation graph. An empirical evaluation on random CSPs show that our algorithm significantly outperforms previous algorithms, including the recent two-phased, hybrid algorithm proposed by Zivan, Grubshtein, and Meisels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barták, R., Müller, T., Rudová, H.: A new approach to modeling and solving minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: Proc. AAAI, pp. 37–42 (1988)Google Scholar
  3. 3.
    El-Sakkout, H., Wallace, M.: Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints 5, 359–388 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fukunaga, A.S.: Search spaces for min-perturbation repair. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 383–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  6. 6.
    Hebrard, E., O’Sullivan, B., Walsh, T.: Distance constraints in constraint satisfaction. In: Proc. IJCAI, pp. 106–111 (2007)Google Scholar
  7. 7.
    Korf, R.: Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence 27(1), 97–109 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ran, Y., Roos, N., van den Herik, H.: Approaches to find a near-minimal change solution for dynamic CSPs. In: Proc. CP-AI-OR, pp. 378–387 (2002)Google Scholar
  10. 10.
    Verfaillie, G., Schiex, T.: Solution reuse in dynamic constraint satisfaction problems. In: Proc. AAAI, Seattle, Washington, pp. 307–312 (1994)Google Scholar
  11. 11.
    Zivan, R., Grubshtein, A., Meisels, A.: Hybrid search for minimal perturbation in dynamic CSPs. Constraints 16, 228–249 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alex Fukunaga
    • 1
  1. 1.The University of TokyoJapan

Personalised recommendations