Advertisement

Abstract

In many scheduling and resource assignment problems, it is necessary to find a solution which is as similar as possible to a given, initial assignment. We propose a new algorithm for this minimal perturbation problem which searches a space of variable commitments and uses a lower bound function based on the minimal vertex covering of a constraint violation graph. An empirical evaluation on random CSPs show that our algorithm significantly outperforms previous algorithms, including the recent two-phased, hybrid algorithm proposed by Zivan, Grubshtein, and Meisels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barták, R., Müller, T., Rudová, H.: A new approach to modeling and solving minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In: Proc. AAAI, pp. 37–42 (1988)Google Scholar
  3. 3.
    El-Sakkout, H., Wallace, M.: Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints 5, 359–388 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fukunaga, A.S.: Search spaces for min-perturbation repair. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 383–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  6. 6.
    Hebrard, E., O’Sullivan, B., Walsh, T.: Distance constraints in constraint satisfaction. In: Proc. IJCAI, pp. 106–111 (2007)Google Scholar
  7. 7.
    Korf, R.: Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence 27(1), 97–109 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 126–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ran, Y., Roos, N., van den Herik, H.: Approaches to find a near-minimal change solution for dynamic CSPs. In: Proc. CP-AI-OR, pp. 378–387 (2002)Google Scholar
  10. 10.
    Verfaillie, G., Schiex, T.: Solution reuse in dynamic constraint satisfaction problems. In: Proc. AAAI, Seattle, Washington, pp. 307–312 (1994)Google Scholar
  11. 11.
    Zivan, R., Grubshtein, A., Meisels, A.: Hybrid search for minimal perturbation in dynamic CSPs. Constraints 16, 228–249 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alex Fukunaga
    • 1
  1. 1.The University of TokyoJapan

Personalised recommendations