Automated Symmetry Breaking and Model Selection in Conjure

  • Ozgur Akgun
  • Alan M. Frisch
  • Ian P. Gent
  • Bilal Syed Hussain
  • Christopher Jefferson
  • Lars Kotthoff
  • Ian Miguel
  • Peter Nightingale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8124)

Abstract

Constraint modelling is widely recognised as a key bottleneck in applying constraint solving to a problem of interest. The Conjure automated constraint modelling system addresses this problem by automatically refining constraint models from problem specifications written in the Essence language. Essence provides familiar mathematical concepts like sets, functions and relations nested to any depth. To date, Conjure has been able to produce a set of alternative model kernels (i.e. without advanced features such as symmetry breaking or implied constraints) for a given specification. The first contribution of this paper is a method by which Conjure can break symmetry in a model as it is introduced by the modelling process. This works at the problem class level, rather than just individual instances, and does not require an expensive detection step after the model has been formulated. This allows Conjure to produce a higher quality set of models. A further limitation of Conjure has been the lack of a mechanism to select among the models it produces. The second contribution of this paper is to present two such mechanisms, allowing effective models to be chosen automatically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akgun, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated constraint modelling. In: AAAI 2011: Twenty-Fifth Conference on Artificial Intelligence (2011)Google Scholar
  2. 2.
    Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a SAT-based version space algorithm. In: AAAI 2006, pp. 1565–1568 (2006)Google Scholar
  5. 5.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann (2002)Google Scholar
  6. 6.
    Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: Proc. of ECAI 2006, pp. 73–77. IOS Press (2006)Google Scholar
  7. 7.
    Coletta, R., Bessière, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Flener, P., Pearson, J., Ågren, M.: Introducing esra, a relational language for modelling combinatorial problems (Abstract). In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 971–971. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint modelling. In: Proc. of the IJCAI 2005, pp. 109–116 (2005)Google Scholar
  10. 10.
    Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008), http://dx.doi.org/10.1007/s10601-008-9047-y MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Frisch, A.M., Jefferson, C., Martinez-Hernandez, B., Miguel, I.: Symmetry in the generation of constraint models. In: Proceedings of the International Symmetry Conference (2007)Google Scholar
  12. 12.
    Frisch, A., Jefferson, C., Miguel, I.: Constraints for breaking more row and column symmetries. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 318–332. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: Proceedings ECAI 2006, pp. 98–102 (2006)Google Scholar
  14. 14.
    Gent, I.P., Miguel, I., Rendl, A.: Common subexpression elimination in automated constraint modelling. In: Workshop on Modeling and Solving Problems with Constraints, pp. 24–30 (2008)Google Scholar
  15. 15.
    Gent, I.P., Walsh, T.: CSPlib: a benchmark library for constraints. Tech. rep. (April 16, 1999), http://citeseer.ist.psu.edu/5054.html, http://www.cs.strath.ac.uk/~apes/reports/apes-09-1999.ps.gz
  16. 16.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Harvey, W.: Symmetry breaking and the social golfer problem. In: Proc. SymCon 2001: Symmetry in Constraints, co-located with CP 2001, pp. 9–16 (2001)Google Scholar
  18. 18.
    Hnich, B.: Thesis: Function variables for constraint programming. AI Commun. 16(2), 131–132 (2003)MATHGoogle Scholar
  19. 19.
    Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)CrossRefGoogle Scholar
  20. 20.
    Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant frequency permutation arrays: An application of constraints to mathematics. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 50–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Koninck, L.D., Brand, S., Stuckey, P.J.: Data independent type reduction for zinc. In: ModRef 2010 (2010)Google Scholar
  22. 22.
    Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 45–52 (2010)Google Scholar
  23. 23.
    Little, J., Gebruers, C., Bridge, D.G., Freuder, E.C.: Using case-based reasoning to write constraint programs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 983–983. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on problem specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 165–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of the zinc modelling language. Constraints 13(3) (2008), http://dx.doi.org/10.1007/s10601-008-9041-4
  26. 26.
    Mears, C., Niven, T., Jackson, M., Wallace, M.: Proving symmetries by model transformation. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 591–605. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Mills, P., Tsang, E., Williams, R., Ford, J., Borrett, J.: EaCL 1.5: An easy abstract constraint optimisation programming language. Tech. rep., University of Essex, Colchester, UK (December 1999)Google Scholar
  28. 28.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 5–8. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Rendl, A.: Thesis: Effective Compilation of Constraint Models. Ph.D. thesis, University of St. Andrews (2010)Google Scholar
  31. 31.
    Smith, B.M.: Search strategies for optimization: Modelling the sonet problem. Tech. Rep. Research Report APES-70-2003. presented at 2nd International Workshop on Reformulating Constraint Satisfaction Problems (2003)Google Scholar
  32. 32.
    Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive party problem: Integer linear programming and constraint programming compared. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 36–52. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ozgur Akgun
    • 1
  • Alan M. Frisch
    • 2
  • Ian P. Gent
    • 1
  • Bilal Syed Hussain
    • 1
  • Christopher Jefferson
    • 1
  • Lars Kotthoff
    • 3
  • Ian Miguel
    • 1
  • Peter Nightingale
    • 1
  1. 1.University of St. AndrewsUK
  2. 2.University of YorkUK
  3. 3.Cork Constraint Computation CentreIreland

Personalised recommendations