Skip to main content

A Comparison of Directional Distances for Hand Pose Estimation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8142)

Abstract

Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

Keywords

  • Directional Distance
  • Shape Match
  • Test Frame
  • Hand Tracking
  • Chamfer Distance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40602-7_14
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40602-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Aa, N.P., Luo, X., Giezeman, G.-J., Tan, R.T., Veltkamp, R.C.: Umpm benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction. In: Workshop on Human Interaction in Computer Vision, pp. 1264–1269 (2011)

    Google Scholar 

  2. Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, pp. 432–439 (2003)

    Google Scholar 

  3. Baak, A., Helten, T., Müller, M., Pons-Moll, G., Rosenhahn, B., Seidel, H.-P.: Analyzing and evaluating markerless motion tracking using inertial sensors. In: Workshop on Human Motion, pp. 137–150 (2010)

    Google Scholar 

  4. Ballan, L., Taneja, A., Gall, J., Van Gool, L., Pollefeys, M.: Motion capture of hands in action using discriminative salient points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 640–653. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  5. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)

    CrossRef  Google Scholar 

  6. Delamarre, Q., Faugeras, O.D.: 3d articulated models and multiview tracking with physical forces. CVIU 81(3), 328–357 (2001)

    MATH  Google Scholar 

  7. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. CVIU 108(1-2), 52–73 (2007)

    Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012)

    MathSciNet  CrossRef  Google Scholar 

  9. Gavrila, D.M.: Multi-feature hierarchical template matching using distance transforms. In: ICPR, pp. 439–444 (1998)

    Google Scholar 

  10. Hamer, H., Gall, J., Weise, T., Van Gool, L.: An object-dependent hand pose prior from sparse training data. In: CVPR, pp. 671–678 (2010)

    Google Scholar 

  11. Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manipulating an object. In: ICCV, pp. 1475–1482 (2009)

    Google Scholar 

  12. Han, D., Rosenhahn, B., Weickert, J., Seidel, H.-P.: Combined registration methods for pose estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 913–924. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  13. Heap, T., Hogg, D.: Towards 3d hand tracking using a deformable model. In: FG, pp. 140–145 (1996)

    Google Scholar 

  14. de La Gorce, M., Fleet, D.J., Paragios, N.: Model-based 3d hand pose estimation from monocular video. PAMI 33(9), 1793–1805 (2011)

    CrossRef  Google Scholar 

  15. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH (2000)

    Google Scholar 

  16. Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: CVPR, pp. 1696–1703 (2010)

    Google Scholar 

  17. Lu, S., Metaxas, D., Samaras, D., Oliensis, J.: Using multiple cues for hand tracking and model refinement. In: CVPR, pp. 443–450 (2003)

    Google Scholar 

  18. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton (1994)

    MATH  Google Scholar 

  19. Nirei, K., Saito, H., Mochimaru, M., Ozawa, S.: Human hand tracking from binocular image sequences. In: IECON, pp. 297–302 (1996)

    Google Scholar 

  20. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: ICCV (2011)

    Google Scholar 

  21. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: CVPR, pp. 1862–1869 (2012)

    Google Scholar 

  22. Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.: Efficient and robust shape matching for model based human motion capture. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 416–425. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  23. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1(3), 244 (1972)

    CrossRef  Google Scholar 

  24. Rehg, J.M., Kanade, T.: Visual tracking of high dof articulated structures: an application to human hand tracking. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 35–46. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  25. Romero, J., Kjellström, H., Kragic, D.: Hands in action: real-time 3d reconstruction of hands in interaction with objects. In: ICRA, pp. 458–463 (2010)

    Google Scholar 

  26. Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: ICCV, pp. 378–387 (2001)

    Google Scholar 

  27. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. IJCV 73, 243–262 (2007)

    CrossRef  Google Scholar 

  28. Sigal, L., Balan, A., Black, M.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87, 4–27 (2010)

    CrossRef  Google Scholar 

  29. Stenger, B., Thayananthan, A., Torr, P.: Model-based hand tracking using a hierarchical bayesian filter. PAMI 28(9), 1372–1384 (2006)

    Google Scholar 

  30. Stolfi, J.: Oriented Proj. Geometry: A Framework for Geom. Computation. Academic Press, Boston (1991)

    Google Scholar 

  31. Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual Hand Tracking Using Nonparametric Belief Propagation. In: Workshop on Generative Model Based Vision, pp. 189–189 (2004)

    Google Scholar 

  32. Tenorth, M., Bandouch, J., Beetz, M.: The TUM Kitchen Data Set of Everyday Manipulation Activities for Motion Tracking and Action Recognition. In: Int.Work. on Tracking Humans for the Eval. of their Motion in Im.Seq., pp. 1089–1096 (2009)

    Google Scholar 

  33. Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: CVPR, pp. 127–133 (2003)

    Google Scholar 

  34. Zhou, H., Huang, T.: Okapi-chamfer matching for articulate object recognition. In: ICCV, pp. 1026–1033 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tzionas, D., Gall, J. (2013). A Comparison of Directional Distances for Hand Pose Estimation. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)