A Comparison of Directional Distances for Hand Pose Estimation

  • Dimitrios Tzionas
  • Juergen Gall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8142)


Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.


Directional Distance Shape Match Test Frame Hand Tracking Chamfer Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aa, N.P., Luo, X., Giezeman, G.-J., Tan, R.T., Veltkamp, R.C.: Umpm benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction. In: Workshop on Human Interaction in Computer Vision, pp. 1264–1269 (2011)Google Scholar
  2. 2.
    Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, pp. 432–439 (2003)Google Scholar
  3. 3.
    Baak, A., Helten, T., Müller, M., Pons-Moll, G., Rosenhahn, B., Seidel, H.-P.: Analyzing and evaluating markerless motion tracking using inertial sensors. In: Workshop on Human Motion, pp. 137–150 (2010)Google Scholar
  4. 4.
    Ballan, L., Taneja, A., Gall, J., Van Gool, L., Pollefeys, M.: Motion capture of hands in action using discriminative salient points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 640–653. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)CrossRefGoogle Scholar
  6. 6.
    Delamarre, Q., Faugeras, O.D.: 3d articulated models and multiview tracking with physical forces. CVIU 81(3), 328–357 (2001)zbMATHGoogle Scholar
  7. 7.
    Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. CVIU 108(1-2), 52–73 (2007)Google Scholar
  8. 8.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gavrila, D.M.: Multi-feature hierarchical template matching using distance transforms. In: ICPR, pp. 439–444 (1998)Google Scholar
  10. 10.
    Hamer, H., Gall, J., Weise, T., Van Gool, L.: An object-dependent hand pose prior from sparse training data. In: CVPR, pp. 671–678 (2010)Google Scholar
  11. 11.
    Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manipulating an object. In: ICCV, pp. 1475–1482 (2009)Google Scholar
  12. 12.
    Han, D., Rosenhahn, B., Weickert, J., Seidel, H.-P.: Combined registration methods for pose estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 913–924. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Heap, T., Hogg, D.: Towards 3d hand tracking using a deformable model. In: FG, pp. 140–145 (1996)Google Scholar
  14. 14.
    de La Gorce, M., Fleet, D.J., Paragios, N.: Model-based 3d hand pose estimation from monocular video. PAMI 33(9), 1793–1805 (2011)CrossRefGoogle Scholar
  15. 15.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH (2000)Google Scholar
  16. 16.
    Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: CVPR, pp. 1696–1703 (2010)Google Scholar
  17. 17.
    Lu, S., Metaxas, D., Samaras, D., Oliensis, J.: Using multiple cues for hand tracking and model refinement. In: CVPR, pp. 443–450 (2003)Google Scholar
  18. 18.
    Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton (1994)zbMATHGoogle Scholar
  19. 19.
    Nirei, K., Saito, H., Mochimaru, M., Ozawa, S.: Human hand tracking from binocular image sequences. In: IECON, pp. 297–302 (1996)Google Scholar
  20. 20.
    Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: ICCV (2011)Google Scholar
  21. 21.
    Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: CVPR, pp. 1862–1869 (2012)Google Scholar
  22. 22.
    Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.: Efficient and robust shape matching for model based human motion capture. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 416–425. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1(3), 244 (1972)CrossRefGoogle Scholar
  24. 24.
    Rehg, J.M., Kanade, T.: Visual tracking of high dof articulated structures: an application to human hand tracking. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 35–46. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  25. 25.
    Romero, J., Kjellström, H., Kragic, D.: Hands in action: real-time 3d reconstruction of hands in interaction with objects. In: ICRA, pp. 458–463 (2010)Google Scholar
  26. 26.
    Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: ICCV, pp. 378–387 (2001)Google Scholar
  27. 27.
    Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. IJCV 73, 243–262 (2007)CrossRefGoogle Scholar
  28. 28.
    Sigal, L., Balan, A., Black, M.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87, 4–27 (2010)CrossRefGoogle Scholar
  29. 29.
    Stenger, B., Thayananthan, A., Torr, P.: Model-based hand tracking using a hierarchical bayesian filter. PAMI 28(9), 1372–1384 (2006)Google Scholar
  30. 30.
    Stolfi, J.: Oriented Proj. Geometry: A Framework for Geom. Computation. Academic Press, Boston (1991)Google Scholar
  31. 31.
    Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual Hand Tracking Using Nonparametric Belief Propagation. In: Workshop on Generative Model Based Vision, pp. 189–189 (2004)Google Scholar
  32. 32.
    Tenorth, M., Bandouch, J., Beetz, M.: The TUM Kitchen Data Set of Everyday Manipulation Activities for Motion Tracking and Action Recognition. In: Int.Work. on Tracking Humans for the Eval. of their Motion in Im.Seq., pp. 1089–1096 (2009)Google Scholar
  33. 33.
    Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: CVPR, pp. 127–133 (2003)Google Scholar
  34. 34.
    Zhou, H., Huang, T.: Okapi-chamfer matching for articulate object recognition. In: ICCV, pp. 1026–1033 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dimitrios Tzionas
    • 1
    • 2
  • Juergen Gall
    • 2
  1. 1.Perceiving Systems DepartmentMPI for Intelligent SystemsGermany
  2. 2.Computer Vision GroupUniversity of BonnGermany

Personalised recommendations