Reconstructing Reflective and Transparent Surfaces from Epipolar Plane Images

  • Sven Wanner
  • Bastian Goldluecke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8142)

Abstract

While multi-view stereo reconstruction of Lambertian surfaces is nowadays highly robust, reconstruction methods based on correspondence search usually fail in the presence of ambiguous information, like in the case of partially reflecting and transparent surfaces. On the epipolar plane images of a 4D light field, however, surfaces like these give rise to overlaid patterns of oriented lines. We show that these can be identified and analyzed quickly and accurately with higher order structure tensors. The resulting method can reconstruct with high precision both the geometry of the surface as well as the geometry of the reflected or transmitted object. Accuracy and feasibility are shown on both ray-traced synthetic scenes and real-world data recorded by our gantry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006)Google Scholar
  2. 2.
    Borga, K.: Estimating multiple depths in semi-transparent stereo images. In: SCIA (1999)Google Scholar
  3. 3.
    Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo reconstruction of dense shape and complex appearance. International Journal of Computer Vision 63(3), 175–189 (2005)CrossRefGoogle Scholar
  4. 4.
    Tsin, Y., Kang, S., Szeliski, R.: Stereo matching with linear superposition of layers. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2), 290–301 (2006)CrossRefGoogle Scholar
  5. 5.
    Sinha, S., Kopf, J., Goesele, M., Scharstein, D., Szeliski, R.: Image-based rendering for scenes with reflections. ACM Transactions on Graphics (Proc. SIGGRAPH) 31(4), 100:1–100:10 (2012)Google Scholar
  6. 6.
    Aach, T., Mota, C., Stuke, I., Muehlich, M., Barth, E.: Analysis of superimposed oriented patterns. IEEE Transactions on Image Processing 15(12), 3690–3700 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Davis, J., Yang, R., Wang, L.: BRDF invariant stereo using light transport constancy. In: Proc. International Conference on Computer Vision (2005)Google Scholar
  8. 8.
    Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proc. International Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  9. 9.
    Ruiters, R., Klein, R.: Heightfield and spatially varying BRDF reconstruction for materials with interreflections. Computer Graphics Forum (Proc. Eurographics) 28(2), 513–522 (2009)CrossRefGoogle Scholar
  10. 10.
    Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(6), 1060–1071 (2010)CrossRefGoogle Scholar
  11. 11.
    Zickler, T., Belhumeur, P., Kriegman, D.: Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision 49(2–3), 215–227 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Levin, A., Zomet, A., Weiss, Y.: Separating reflections from a single image using local features. In: Proc. International Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  13. 13.
    Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence (2007)Google Scholar
  14. 14.
    Bolles, R., Baker, H., Marimont, D.: Epipolar-plane image analysis: An approach to determining structure from motion. International Journal of Computer Vision 1(1), 7–55 (1987)CrossRefGoogle Scholar
  15. 15.
    Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4D light fields. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 41–48 (2012)Google Scholar
  16. 16.
    Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.: The Lumigraph. In: Proc. SIGGRAPH, pp. 43–54 (1996)Google Scholar
  17. 17.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. International Conference on Computer Vision, pp. 433–438 (1987)Google Scholar
  18. 18.
    Smith, O.: Eigenvalues of a symmetric 3x3 matrix. Communications of the ACM 4(4), 168 (1961)CrossRefGoogle Scholar
  19. 19.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  20. 20.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM Journal on Imaging Sciences (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sven Wanner
    • 1
  • Bastian Goldluecke
    • 1
  1. 1.Heidelberg Collaboratory for Image ProcessingGermany

Personalised recommendations