Skip to main content

High Payload Audio Watermarking Using Sparse Coding with Robustness to MP3 Compression

  • Conference paper
Advances in Security of Information and Communication Networks (SecNet 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 381))

  • 1263 Accesses

Abstract

A high payload audio watermarking technique is proposed based on the compressed sensing and sparse coding framework, with robustness to MP3 128kbps and 64kbps compression attacks. The binary watermark is a sparse vector with one non-zero element that takes a positive or negative sign based on the bit value to be encoded. A Gaussian random dictionary maps the sparse watermark to a random watermark embedding vector that is selected adaptively for each audio frame to maximize robustness to the MP3 attack. At the decoder, the Basis Pursuit Denoising algorithm (BPDN) is used to extract the embedded watermark sign. High payloads of (689, 1378 and 2756) bps are achieved with %BER of (0.3%, 0.5% and 1%) and (0.1%, 0.3% and 0.5%) for 64kbps and 128kbps MP3 compression attacks respectively. The signal to embedding noise ratio is kept in the range of 27-30 dB in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noriega, R.M., Nakano, M., Kurkoski, B., Yamaguchi, K.: High Payload Audio Watermarking: toward Channel Characterization of MP3 Compression. Journal of Information Hiding and Multimedia Signal Processing 2(2), 91–107 (2011)

    Google Scholar 

  2. Vivekananda, B.K., Indranil, S., Abhijit, D.: An Audio Watermarking Scheme using Singular Value Decomposition and Dither-Modulation Quantization. Multimedia Tools and Applications Journal 52(2-3), 369–383 (2011)

    Article  Google Scholar 

  3. Dhavale, S.V., Deodhar, R.S., Patnaik, L.M.: Walsh Hadamard Transform Based Blind Watermarking for Digital Audio Copyright Protection. In: Das, V.V., Thankachan, N. (eds.) CIIT 2011. CCIS, vol. 250, pp. 469–475. Springer, Heidelberg (2011)

    Google Scholar 

  4. Yang, H., Bao, D., Wang, X., Niu, P.: A Robust Content Based Audio Watermarking using UDWT and Invariant Histogram. Multimedia Tools and Applications Journal (November 2010)

    Google Scholar 

  5. El Hamdouni N., Adib A., Labri S., Torki M.: A Blind Digital Audio Watermarking Scheme Based on EMD and UISA Techniques. Multimedia Tools and Applications Journal (January 2012)

    Google Scholar 

  6. Tewari, T.K., Saxena, V., Gupta, J.P.: Audio Watermarking: Current State of Art and Future Objectives. International Journal of Digital Content Technology and Applications 5(7), 306–313 (2011)

    Article  Google Scholar 

  7. Datta, K., Gupta, I.S.: Partial Encryption and Watermarking Scheme for Audio Files with Controlled Degradation of Quality. Multimedia Tools and Applications, Journal (2012)

    Google Scholar 

  8. Ercelebi, E., Batakci, L.: Audio watermarking Scheme Based on Embedding Strategy in Low Frequency Components with a Binary Image. Digital Signal Processing 19(2), 265–277 (2009)

    Article  Google Scholar 

  9. Orsdemir, A., Altun, H.O., Sharma, G., Bocko, M.F.: On the Security and Robustness of Encryption via Compressed Sensing. In: IEEE Military Communication Conference MILCOM 2008, pp. 1–7 (2008)

    Google Scholar 

  10. Candès, E., Tao, T.: Decoding by Linear Programming. IEEE Transaction on Information Theory 51(12), 4203–4215 (2005)

    Article  MATH  Google Scholar 

  11. Candès, E., Randall, P.: Highly Robust Error Correction by Convex Programming. IEEE Transaction on Information Theory 54(7) (2006)

    Google Scholar 

  12. Laska, J., Davenport, M., Baraniuk, R.: Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice. In: Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, California (2009)

    Google Scholar 

  13. L1 magic: http://users.ece.gatech.edu/~justin/l1magic/

  14. Gemmeke, J.F., Virtanen, T., Hurmalainen, A.: Examplar Based Sparse Representations for Noise Robust Automatic Speech Recognition. IEEE Trans. Audio, Speech and Language Processing 19(9), 2067–2080 (2011)

    Article  Google Scholar 

  15. Sprechman, P., Sapiro, G.: Dictionary Learning and Sparse Coding for Unsupervised Clustering. In: ICASSP 2010, pp. 2042–2045 (2010)

    Google Scholar 

  16. Wright, J., Yi, M., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse Representation for Computer Vision and Pattern Recognition. Proc. of IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  17. Sheikh, M., Baraniuk, R.: Blind Error-Free Detection of Transform-Domain Watermarks. In: IEEE Int. Conf. on Image Processing (ICIP), San Antonio, Texas, vol. 5, pp. V-453–V-456 (September 2007)

    Google Scholar 

  18. Tagliasacchi, M., Valenzise, G., Tubaro, S.: Hash-Based Identification of Sparse Image Tampering. IEEE Transactions on Image Processing 18(11), 2491–2504 (2009)

    Article  MathSciNet  Google Scholar 

  19. Valenzise, G., Prandi, G., Tagliasacchi, M., Sarti, A.: Identification of Sparse Audio Tampering using Distributed Source Coding and Compressive Sensing Techniques. Eurasip Journal on Image and Video Processing 2009, 1–13 (2009)

    Article  Google Scholar 

  20. Fakhr, M.W.: Robust Watermarking using Compressed Sensing Framework with Application to MP3. International Journal of Multimedia and its Applications, IJMA 4(6), 27–43 (2012)

    Article  Google Scholar 

  21. Fakhr, M.W.: Sparse Watermark Embedding and Recovery using Compressed Sensing Framework for Audio Signals. In: International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Sanya, China, pp. 535–539 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fakhr, M.W. (2013). High Payload Audio Watermarking Using Sparse Coding with Robustness to MP3 Compression. In: Awad, A.I., Hassanien, A.E., Baba, K. (eds) Advances in Security of Information and Communication Networks. SecNet 2013. Communications in Computer and Information Science, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40597-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40597-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40596-9

  • Online ISBN: 978-3-642-40597-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics