Abstract
Unit selection is known for its ability to produce high-quality synthetic speech. In contrast with HMM-based synthesis, it produces more natural speech but it may suffer from sudden quality drops at concatenation points. The danger of quality deterioration can be reduced (but, unfortunately, not eliminated) by using very large speech corpora. In this paper, our first experiment with automatic artifact detection is presented. Firstly, a brief description of artifacts is given. Then, a listening test experiment, in which listeners evaluated speech synthesis artifacts, is described. The data gathered during the listening test were then used to train an SVM classifier. Finally, results of the SVM-based artifact detection in synthetic speech are discussed.
The work has been supported by the Technology Agency of the Czech Republic, project No. TA01011264, and by the grant of the University of West Bohemia, project No. SGS-2013-032.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klabbers, E., Veldhuis, R.: On the reduction of concatenation artefacts in diphone synthesis. In: Proc. ICSLP, Sidney, Australia, pp. 1983–1986 (1998)
Pantazis, Y., Stylianou, Y., Klabbers, E.: Discontinuity detection in concatenated speech synthesis based on nonlinear speech analysis. In: Proc. INTERSPEECH, Lisbon, Portugal, pp. 2817–2820 (2005)
Lu, H., Wei, S., Dai, L., Wang, R.H.: Automatic error detection for unit selection speech synthesis using log likelihood ratio based SVM classifier. In: Proc. INTERSPEECH, Makuhari, Japan, pp. 162–165 (2010)
Legát, M., Matoušek, J.: Analysis of data collected in listening tests for the purpose of evaluation of concatenation cost functions. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 33–40. Springer, Heidelberg (2011)
Tihelka, D., Kala, J., Matoušek, J.: Enhancements of Viterbi search for fast unit selection synthesis. In: Proc. INTERSPEECH, Makuhari, Japan, pp. 174–177 (2010)
Matoušek, J., Romportl, J.: Recording and annotation of speech corpus for Czech unit selection speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 326–333. Springer, Heidelberg (2007)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technolog. 2, 27:1–27:27 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vít, J., Matoušek, J. (2013). Concatenation Artifact Detection Trained from Listeners Evaluations. In: Habernal, I., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2013. Lecture Notes in Computer Science(), vol 8082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40585-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-40585-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40584-6
Online ISBN: 978-3-642-40585-3
eBook Packages: Computer ScienceComputer Science (R0)