Skip to main content

CRF-Based Czech Named Entity Recognizer and Consolidation of Czech NER Research

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8082)

Abstract

In this paper, we present our effort to consolidate and push further the named entity recognition (NER) research for the Czech language. The research in Czech is based upon a non-standard basis. Some systems are constructed to provide hierarchical outputs whereas the rests give flat entities. Direct comparison among these system is therefore impossible. Our first goal is to tackle this issue. We build our own NER system based upon conditional random fields (CRF) model. It is constructed to output either flat or hierarchical named entities thus enabling an evaluation with all the known systems for Czech language. We show a 3.5 – 11% absolute performance increase when compared to previously published results. As a last step we put our system in the context of the research for other languages. We show results for English, Spanish and Dutch corpora. We can conclude that our system provides solid results when compared to the foreign state of the art.

Keywords

  • named entity recognition
  • conditional random fields
  • Czech Named Entity Corpus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40585-3_20
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40585-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mollá, D., Van Zaanen, M., Smith, D.: Named entity recognition for question answering (2006)

    Google Scholar 

  2. Babych, B., Hartley, A.: Improving machine translation quality with automatic named entity recognition. In: Proceedings of the 7th International EAMT Workshop on MT and Other Language Technology Tools, Improving MT Through Other Language Technology Tools: Resources and Tools for Building MT, EAMT 2003, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2003)

    CrossRef  Google Scholar 

  3. Nobata, C., Sekine, S., Isahara, H., Grishman, R.: Summarization System Integrated with Named Entity Tagging and IE pattern Discovery. In: LREC (2002)

    Google Scholar 

  4. Ševčíková, M., Žabokrtský, Z., Krůza, O.: Named entities in Czech: annotating data and developing NE tagger. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 188–195. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  5. Kravalová, J., Žabokrtský, Z.: Czech named entity corpus and SVM-based recognizer. In: Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration, NEWS 2009, pp. 194–201. Association for Computational Linguistics, Stroudsburg (2009)

    CrossRef  Google Scholar 

  6. Konkol, M., Konopík, M.: Maximum entropy named entity recognition for Czech language. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 203–210. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Král, P.: Features for Named Entity Recognition in Czech Language. In: KEOD, pp. 437–441 (2011)

    Google Scholar 

  8. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of the 6th Conference on Natural Language Learning, COLING 2002, vol. 20, pp. 1–4. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  9. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, pp. 142–147. Association for Computational Linguistics, Stroudsburg (2003)

    CrossRef  Google Scholar 

  10. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  11. Lin, D., Wu, X.: Phrase clustering for discriminative learning. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ACL 2009, vol. 2, pp. 1030–1038. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  12. Nocedal, J.: Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 773–782 (1980)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Chen, S.F., Rosenfeld, R.: A gaussian prior for smoothing maximum entropy models (1999)

    Google Scholar 

  14. Hajič, J.: Disambiguation of Rich Inflection (Computational Morphology of Czech). Karolinum, Charles University Press, Prague, Czech Republic (2004)

    Google Scholar 

  15. Ciaramita, M., Altun, Y.: Named-Entity Recognition in Novel Domains with External Lexical Knowledge (2005)

    Google Scholar 

  16. Carreras, X., Màrques, L., Padró, L.: (named entity extraction using adaboost). In: Proceedings of CoNLL 2002, Taipei, Taiwan, pp. 167–170 (2002)

    Google Scholar 

  17. Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: (named entity recognition through classifier combination). In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 168–171 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konkol, M., Konopík, M. (2013). CRF-Based Czech Named Entity Recognizer and Consolidation of Czech NER Research. In: Habernal, I., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2013. Lecture Notes in Computer Science(), vol 8082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40585-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40585-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40584-6

  • Online ISBN: 978-3-642-40585-3

  • eBook Packages: Computer ScienceComputer Science (R0)