Skip to main content

Bone Malignancies

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

Functional imaging, in particular dynamic contrast-enhanced MRI (DCE-MRI), has a role in differentiating benign from malignant cartilaginous tumors. Chondrosarcoma grade I or atypical cartilaginous tumor enhances within 10 s. of arterial enhancement. Enchondroma enhances after 10 s. or not at all. FDG-PET has the same uptake patterns in both enchondroma and chondrosarcoma grade I. A second diagnostic application is in identifying the small interstitial space of giant cell tumor. The resulting washout can be used in detecting recurrent disease.

Functional imaging techniques are becoming more important as it is shown that morphologic criteria, basically tumor volume, are insufficient to monitor response to treatment. DCE-MRI can be used to identify residual viable tumor after chemotherapy. DCE-MRI targets parameters that define angiogenesis. Under therapy, changes in capillary permeability (time-intensity curve shape and slope) and vascular density (maximum enhancement) are often observed before changes in tumor volume.

There have been conflicting reports on the usefulness of glucose metabolism imaged by 18F-deoxyglucose positron emission tomography (18F-FDG-PET) as a parameter to assess response to chemotherapy in sarcoma. Issues such as low specificity and differences between various sarcoma types need to be addressed. However, differences in metabolic volume depicted with 18F-FDG-PET have been reported to correlate with response. This tumor component correlates with the viable tumor as defined by early enhancement on DCE-MRI and seems a promising venue of further research. PET is gaining a place in detecting recurrent disease, also at sites distant from the original tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

References

  1. Bloem JL, et al. Bone tumors. Eur Radiol. 2000;10:207–12.

    Article  CAS  PubMed  Google Scholar 

  2. Eefting D, et al. Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol. 2009;33:50–7.

    Article  PubMed  Google Scholar 

  3. Geirnaerdt MJ, et al. Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. AJR Am J Roentgenol. 1997;169:1097–104.

    Article  CAS  PubMed  Google Scholar 

  4. Geirnaerdt MJ, et al. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology. 2000;214:539–46.

    Article  CAS  PubMed  Google Scholar 

  5. Lee FY, et al. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am. 2004;86-A:2677–85.

    PubMed  Google Scholar 

  6. Rijswijk CSP, Bloem JL. Chapter 99: Monitoring therapy in bone and soft tissue tumors. In: Pope TL, Bloem JL, Beltran J, Morrison WB, Wilson DJ, editors. Imaging of the musculoskeletal system. Philadelphia: Saunders/Elsevier; 2008. p. 1860–79. ISBN 978-1-4160-2963-2.

    Google Scholar 

  7. Rijswijk CSP, Bloem JL. Monitoring therapy in bone and soft tissue tumors. In: Pope TL, Bloem JL, Beltran J, Morrison WB, Wilson DJ, editors. Saunders/Elsevier; 2012 (in press).

    Google Scholar 

  8. Huvos AG, et al. Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch Pathol Lab Med. 1977;101:14–8.

    CAS  PubMed  Google Scholar 

  9. van der Woude HJ, et al. Changes in tumor perfusion induced by chemotherapy in bone sarcomas: color Doppler flow imaging compared with contrast-enhanced MR imaging and three-phase bone scintigraphy. Radiology. 1994;191:421–31.

    PubMed  Google Scholar 

  10. Picci P, et al. Chemotherapy-induced tumor necrosis as a prognostic factor in localized Ewing’s sarcoma of the extremities. J Clin Oncol. 1997;15:1553–9.

    CAS  PubMed  Google Scholar 

  11. Taber DS, et al. Treated Ewing sarcoma: radiographic appearance in response, recurrence, and new primaries. AJR Am J Roentgenol. 1983;140:753–8.

    Article  CAS  PubMed  Google Scholar 

  12. Holscher HC, et al. Can conventional radiographs be used to monitor the effect of neoadjuvant chemotherapy in patients with osteogenic sarcoma? Skeletal Radiol. 1996;25:19–24.

    Article  CAS  PubMed  Google Scholar 

  13. Erlemann R, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology. 1990;175:791–6.

    CAS  PubMed  Google Scholar 

  14. Holscher HC, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology. 1992;182:839–44.

    CAS  PubMed  Google Scholar 

  15. Costelloe CM, et al. Cancer response criteria and bone metastases: RECIST 1.1, MDA And PERCIST. J. Cancer. 2010;1:80–92.

    Article  Google Scholar 

  16. van der Woude HJ, et al. Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol. 1995;165:596–8.

    Google Scholar 

  17. Tofts PS, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  CAS  PubMed  Google Scholar 

  18. Verstraete KL, et al. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging—parametric “first-pass” images depict tissue vascularization and perfusion. Radiology. 1994;192:835–43.

    CAS  PubMed  Google Scholar 

  19. Egmont-Petersen M, et al. Detection of areas with viable remnant tumor in postchemotherapy patients with Ewing’s sarcoma by dynamic contrast-enhanced MRI using pharmacokinetic modeling. Magn Reson Imaging. 2000;18:525–35.

    Article  CAS  PubMed  Google Scholar 

  20. Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol. 2000;29:555–62.

    Article  CAS  PubMed  Google Scholar 

  21. van Rijswijk CSP, et al. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging. 2002;15:302–7.

    Article  PubMed  Google Scholar 

  22. Oka K, et al. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol. 2010;39:141–6.

    Article  PubMed  Google Scholar 

  23. Schnapauff D, et al. Diffusion-weighted echo-planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas. J Magn Reson Imaging. 2009;29:1355–9.

    Article  PubMed  Google Scholar 

  24. Suh JY, et al. Is apparent diffusion coefficient reliable and accurate for monitoring effects of antiangiogenic treatment in a longitudinal study? J Magn Reson Imaging. 2012;35:1430–6.

    Article  PubMed  Google Scholar 

  25. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology. 2010;256:348–64.

    Article  PubMed  Google Scholar 

  26. Forsberg F, et al. Assessment of angiogenesis: implications for ultrasound imaging. Ultrasonics. 2004;42:325–30.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor GA, et al. Vascularity of tumors in children: evaluation with color Doppler imaging. AJR Am J Roentgenol. 1991;157:1267–71.

    Article  CAS  PubMed  Google Scholar 

  28. Kiessling F, et al. Comparing dynamic parameters of tumor vascularization in nude mice revealed by magnetic resonance imaging and contrast-enhanced intermittent power Doppler sonography. Invest Radiol. 2003;38:516–24.

    PubMed  Google Scholar 

  29. van der Woude HJ, et al. Treatment of high-grade bone sarcomas with neoadjuvant chemotherapy: the utility of sequential color Doppler sonography in predicting histopathologic response. AJR Am J Roentgenol. 1995;165:125–33.

    Article  PubMed  Google Scholar 

  30. Benz MR, et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21:345–51.

    Article  PubMed  Google Scholar 

  31. Treglia G, et al. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systemic review and a meta-analysis. Skeletal Radiol. 2012;41:249–56.

    Article  PubMed  Google Scholar 

  32. Gaston LL, et al. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol. 2011;40:1007–15.

    Article  PubMed  Google Scholar 

  33. Hayashida Y, et al. Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: initial experience. J Magn Reson Imaging. 2006;23:377–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Bloem MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloem, J.L., van Rijswijk, C., Kroon, H.M. (2014). Bone Malignancies. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics