Skip to main content

Esophagus, Stomach, and Small Bowel Malignancies

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

In this chapter we try to synthesize the emerging role of functional imaging techniques in esophagic and gastric tumors as well as in small bowel malignancies. In relation to small bowel malignancies, we focused on gastrointestinal stromal tumors (GIST) and carcinoid tumors. Positron emission tomography/computed tomography (PET/CT) represents an essential nuclear medicine technique showing superiority against conventional diagnostic imaging methods in the detection of lymphatic and distant metastases, detection of recurrences, and evaluation of tumor response to different treatments in these tumors. We mainly give attention to the most common PET radiotracer (18F-FDG), but other new PET radiotracers are also mentioned such as 68Ga-labeled somatostatin analogs (DOTA-TOC, DOTA-TATE, and DOTA-NOC) that are basically used in the evaluation of carcinoid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG:

2-[18F] fluoro-2-deoxy-D-glucose

5-HIAA:

5-Hydroxyindoleacetic acid

ACC:

Adenocarcinoma

ADC:

Apparent diffusion coefficient

AJCC:

American Joint Committee on Cancer

APUD:

Amine precursor uptake and decarboxylation

ATP:

Adenosine triphosphate

CT:

Computed tomography

DOTATATE:

177Lu-DOTA-Tyr3-octreotate

DOTATOC:

90Y-DOTA-Tyr3-octreotide

DW:

Diffusion weighted

EORTC:

European Organization for Research and Treatment of Cancer

EUS:

Endoscopic ultrasound

FDG:

Fluorodeoxyglucose

FLT3:

Fms-like tyrosine kinase 3

FNAB:

Fine-needle aspiration biopsy

GIST:

Gastrointestinal stromal tumors

HTP:

11C 5-Hydroxytryptophan

M:

Metastases

MIBG:

123I-Meatoiodobenzylguanidine

MRI:

Magnetic resonance imaging

MUNICON:

Study

N:

Lymph nodes

NCCN:

National Comprehensive Cancer Network

PDGFRA:

Platelet derived growth factor receptor alpha

PDGFRs:

Platelet derived growth factor receptor

PERCIST:

PET response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography-computed tomography

RECIST:

Response evaluation criteria in solid tumors

SCC:

Squamous cell carcinoma

SRS:

Somatostatin receptor scintigraphy

SSTR:

Somatostatin receptors

SUV:

Standardized uptake value

TKI:

Tyrosine kinase inhibitor

TNM:

System

UICC:

Union for International Cancer Control

VEGFT:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Diederich S. Staging of oesophageal cancer. Cancer Imaging. 2007;7(Spec No A):S63–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jamil LH, et al. Staging and restaging of advanced esophageal cancer. Curr Opin Gastroenterol. 2008;24(4):530–4.

    Article  PubMed  Google Scholar 

  3. Fuertes Manuel J, et al. SPECT-CT 67Ga studies in lymphoma disease. Contribution to staging and follow-up. Rev Esp Med Nucl. 2006;25(4):242–9.

    Article  CAS  PubMed  Google Scholar 

  4. Karaosmanoglu AD, Blake MA. Applications of PET-CT in patients with esophageal cancer. Diagn Interv Radiol. 2012;18(2):171–82.

    PubMed  Google Scholar 

  5. Chowdhury FU, et al. The role of 18F-FDG PET/CT in the evaluation of oesophageal carcinoma. Clin Radiol. 2008;63(12):1297–309.

    Article  CAS  PubMed  Google Scholar 

  6. Peyre CG, et al. Predicting systemic disease in patients with esophageal cancer after esophagectomy: a multinational study on the significance of the number of involved lymph nodes. Ann Surg. 2008;248(6):979–85.

    Article  PubMed  Google Scholar 

  7. DeMeester SR. Adenocarcinoma of the esophagus and cardia: a review of the disease and its treatment. Ann Surg Oncol. 2006;13(1):12–30.

    Article  PubMed  Google Scholar 

  8. Rice TW, et al. 7th Edition of the AJCC cancer staging manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17(7):1721–4.

    Article  PubMed  Google Scholar 

  9. Howard JM, Johnston C. Patterns of lymphatic drainage and lymph node involvement in esophageal cancer. Abdom Imaging. 2012;38(2):233–43.

    Article  Google Scholar 

  10. Greene FL, et al. AJCC cancer staging manual. New York: Springer; 2002.

    Book  Google Scholar 

  11. Bruzzi JF, et al. PET/CT of esophageal cancer: its role in clinical management. Radiographics. 2007;27(6):1635–52.

    Article  PubMed  Google Scholar 

  12. Lightdale CJ, Kulkarni KG. Role of endoscopic ultrasonography in the staging and follow-up of esophageal cancer. J Clin Oncol. 2005;23(20):4483–9.

    Article  PubMed  Google Scholar 

  13. Flanagan FL, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol. 1997;168(2):417–24.

    Article  CAS  PubMed  Google Scholar 

  14. van Vliet EP, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer. 2008;98(3):547–57.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Weber WA, Ott K. Imaging of esophageal and gastric cancer. Semin Oncol. 2004;31(4):530–41.

    Article  PubMed  Google Scholar 

  16. van Westreenen HL, et al. Synchronous primary neoplasms detected on 18F-FDG PET in staging of patients with esophageal cancer. J Nucl Med. 2005;46(8):1321–5.

    PubMed  Google Scholar 

  17. Erasmus JJ, et al. PET and PET/CT in the diagnosis and staging of esophageal and gastric cancers. PET Clin. 2008;3(2):135–45.

    Article  Google Scholar 

  18. Sun L, et al. Clinical usefulness of 18F-FDG PET/CT in the restaging of esophageal cancer after surgical resection and radiotherapy. World J Gastroenterol. 2009;15(15):1836–42.

    Article  PubMed  Google Scholar 

  19. Krause BJ, et al. 18F-FDG PET and 18F-FDG PET/CT for assessing response to therapy in esophageal cancer. J Nucl Med. 2009;50 Suppl 1:89S–96.

    Article  CAS  PubMed  Google Scholar 

  20. Chen YM, et al. Can (1)(8)F-fluorodeoxyglucose positron emission tomography predict responses to neoadjuvant therapy in oesophageal cancer patients? A meta-analysis. Nucl Med Commun. 2011;32(11):1005–10.

    Article  CAS  PubMed  Google Scholar 

  21. Lordick F, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8(9):797–805.

    Article  PubMed  Google Scholar 

  22. Wieder HA, et al. PET and PET-CT in esophageal and gastric cancer. Methods Mol Biol. 2011;727:59–76.

    Article  PubMed  Google Scholar 

  23. Yanagawa M, et al. Evaluation of response to neoadjuvant chemotherapy for esophageal cancer: PET response criteria in solid tumors versus response evaluation criteria in solid tumors. J Nucl Med. 2012;53(6):872–80.

    Article  CAS  PubMed  Google Scholar 

  24. Hayano K, et al. Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma: initial clinical results. Oncol Rep. 2007;18(4):901–8.

    PubMed  Google Scholar 

  25. Makari Y, et al. Correlation between tumor blood flow assessed by perfusion CT and effect of neoadjuvant therapy in advanced esophageal cancers. J Surg Oncol. 2007;96(3):220–9.

    Article  PubMed  Google Scholar 

  26. Aoyagi T, et al. Apparent diffusion coefficient values measured by diffusion-weighted imaging predict chemoradiotherapeutic effect for advanced esophageal cancer. Dig Surg. 2011;28(4):252–7.

    Article  PubMed  Google Scholar 

  27. Aoyagi T, et al. Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis. Eur Radiol. 2012;22(6):1172–7.

    Article  PubMed  Google Scholar 

  28. Onur MR, et al. Role of the apparent diffusion coefficient in the differential diagnosis of gastric wall thickening. J Magn Reson Imaging. 2012;36(3):672–7.

    Article  PubMed  Google Scholar 

  29. Avcu S, et al. The role of diffusion-weighted MR imaging and ADC values in the diagnosis of gastric tumors. JBR-BTR. 2012;95(1):1–5.

    CAS  PubMed  Google Scholar 

  30. Castrillon GA, et al. DWI of GI tract and peritoneum. In: Luna A et al., editors. Diffusion MRI outside the brain. Berlin: Springer; 2012.

    Google Scholar 

  31. Bertagna F, et al. Role of F-18-FDG-PET/CT in restaging of patients affected by gastrointestinal stromal tumours (GIST). Nucl Med Rev Cent East Eur. 2010;13(2):76–80.

    PubMed  Google Scholar 

  32. Tan CB, et al. Gastrointestinal stromal tumors: a review of case reports, diagnosis, treatment, and future directions. ISRN Gastroenterol. 2012;2012:595968.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Stefanelli A, et al. F-FDG PET imaging in the evaluation of treatment response to new chemotherapies beyond imatinib for patients with gastrointestinal stromal tumors. ISRN Gastroenterol. 2011;2011:824892.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Joensuu H, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344(14):1052–6.

    Article  CAS  PubMed  Google Scholar 

  35. Goh BK, et al. Pathologic, radiologic and PET scan response of gastrointestinal stromal tumors after neoadjuvant treatment with imatinib mesylate. Eur J Surg Oncol. 2006;32(9):961–3.

    Article  CAS  PubMed  Google Scholar 

  36. Kalkmann J, et al. Consensus report on the radiological management of patients with gastrointestinal stromal tumours (GIST): recommendations of the German GIST Imaging Working Group. Cancer Imaging. 2012;12:126–35.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Simo Perdigo M, et al. Role of FDG PET in the staging, recurrence and treatment response to imatinib (Glivec) in patients with gastrointestinal stromal tumors. Rev Esp Med Nucl. 2006;25(2):80–8.

    Article  CAS  PubMed  Google Scholar 

  38. Wong CS, et al. Correlation of measurements from diffusion weighted MR imaging and FDG PET/CT in GIST patients: ADC versus SUV. Eur J Radiol. 2012;81(9):2122–6.

    Article  PubMed  Google Scholar 

  39. Otomi Y, et al. Relationship between FDG uptake and the pathological risk category in gastrointestinal stromal tumors. J Med Invest. 2010;57(3–4):270–4.

    Article  PubMed  Google Scholar 

  40. Kamiyama Y, et al. 18F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors. World J Surg. 2005;29(11):1429–35.

    Article  PubMed  Google Scholar 

  41. Holdsworth CH, et al. CT and PET: early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. AJR Am J Roentgenol. 2007;189(6):W324–30.

    Article  PubMed  Google Scholar 

  42. Banzo I, et al. 18F-FDG PET/CT in response evaluation of gastrointestinal stromal tumours treated with imatinib. Rev Esp Med Nucl. 2008;27(3):168–75.

    Article  CAS  PubMed  Google Scholar 

  43. Choi H, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25(13):1753–9.

    Article  PubMed  Google Scholar 

  44. Choi H. Response evaluation of gastrointestinal stromal tumors. Oncologist. 2008;13 Suppl 2:4–7.

    Article  PubMed  Google Scholar 

  45. Delgado Bolton RC, et al. Early response to treatment with Glivec detected with 18F-FDG PET in a patient with gastrointestinal stromal tumor. Rev Esp Med Nucl. 2008;27(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  46. van Oosterom AT, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001;358(9291):1421–3.

    Article  PubMed  Google Scholar 

  47. Demetri GD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  CAS  PubMed  Google Scholar 

  48. Shinto A, et al. Early response assessment in gastrointestinal stromal tumors with FDG PET scan 24 hours after a single dose of imatinib. Clin Nucl Med. 2008;33(7):486–7.

    Article  PubMed  Google Scholar 

  49. Heinicke T, et al. Very early detection of response to imatinib mesylate therapy of gastrointestinal stromal tumours using 18fluoro-deoxyglucose-positron emission tomography. Anticancer Res. 2005;25(6C):4591–4.

    CAS  PubMed  Google Scholar 

  50. Jager PL, et al. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun. 2004;25(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  51. Prior JO, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27(3):439–45.

    Article  CAS  PubMed  Google Scholar 

  52. Lassau N, et al. Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography. AJR Am J Roentgenol. 2006;187(5):1267–73.

    Article  PubMed  Google Scholar 

  53. Lassau N, et al. Quantitative functional imaging by dynamic contrast enhanced ultrasonography (DCE-US) in GIST patients treated with masatinib. Invest New Drugs. 2012;30(2):765–71.

    Article  CAS  PubMed  Google Scholar 

  54. Schlemmer M, et al. Perfusion patterns of metastatic gastrointestinal stromal tumor lesions under specific molecular therapy. Eur J Radiol. 2011;77(2):312–8.

    Article  PubMed  Google Scholar 

  55. Goerres GW, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging. 2005;32(2):153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Caplin ME, et al. Carcinoid tumour. Lancet. 1998;352(9130):799–805.

    Article  CAS  PubMed  Google Scholar 

  57. Oberg K. Neuroendocrine gastrointestinal tumors – a condensed overview of diagnosis and treatment. Ann Oncol. 1999;10 Suppl 2:S3–8.

    Article  PubMed  Google Scholar 

  58. Rindi G, et al. Cell biology, clinicopathological profile, and classification of gastro-enteropancreatic endocrine tumors. J Mol Med (Berl). 1998;76(6):413–20.

    Article  CAS  Google Scholar 

  59. Oberg K, Eriksson B. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours. Best Pract Res Clin Endocrinol Metab. 2005;19(2):265–76.

    Article  PubMed  Google Scholar 

  60. Khan MU, et al. Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of carcinoid tumors. Q J Nucl Med Mol Imaging. 2008;52(4):441–54.

    CAS  PubMed  Google Scholar 

  61. d’Assignies G, et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268(2):390–9.

    Article  PubMed  Google Scholar 

  62. Kaltsas G, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86(2):895–902.

    Article  CAS  PubMed  Google Scholar 

  63. Krausz Y, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with (1)(1)(1)In-DTPA-octreotide (OctreoScan(R)). Mol Imaging Biol. 2011;13(3):583–93.

    Article  PubMed  Google Scholar 

  64. Kaltsas G, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol. 2004;151(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  65. Weiner RE, Thakur ML. Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl Radiat Isot. 2002;57(5):749–63.

    Article  CAS  PubMed  Google Scholar 

  66. Bomanji JB, Papathanasiou ND. (1)(1)(1)In-DTPA(0)-octreotide (Octreoscan), (1)(3)(1)I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S113–25.

    Article  PubMed  Google Scholar 

  67. de Jong M, et al. Comparison of (111)In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 1998;58(3):437–41.

    PubMed  Google Scholar 

  68. Hoefnagel CA, et al. Diagnosis and treatment of a carcinoid tumor using iodine-131 meta-iodobenzylguanidine. Clin Nucl Med. 1986;11(3):150–2.

    Article  CAS  PubMed  Google Scholar 

  69. Mukherjee JJ, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with (131)I-meta-iodobenzylguanidine [(131)I-mIBG]. Clin Endocrinol (Oxf). 2001;55(1):47–60.

    Article  CAS  Google Scholar 

  70. Prvulovich EM, et al. Iodine-131-MIBG therapy of a patient with carcinoid liver metastases. J Nucl Med. 1998;39(10):1743–5.

    CAS  PubMed  Google Scholar 

  71. Safford SD, et al. Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid. Results in 98 patients. Cancer. 2004;101(9):1987–93.

    Article  CAS  PubMed  Google Scholar 

  72. North JH, Pack MS. Malignant tumors of the small intestine: a review of 144 cases. Am Surg. 2000;66(1):46–51.

    CAS  PubMed  Google Scholar 

  73. Schottenfeld D, et al. The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol. 2009;19(1):58–69.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Cronin CG, et al. Utility of positron emission tomography/CT in the evaluation of small bowel pathology. Br J Radiol. 2012;85(1017):1211–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Rodríguez Rey MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rey, C.R., Candil, A.O., Fernández, R.J.M. (2014). Esophagus, Stomach, and Small Bowel Malignancies. In: Luna, A., Vilanova, J., Hygino Da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40582-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40582-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40581-5

  • Online ISBN: 978-3-642-40582-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics