Advertisement

Regulation of Phenazine Biosynthesis

  • H. Sakhtah
  • A. Price-Whelan
  • L. E. P. Dietrich
Chapter

Abstract

Microbiologists have historically been struck by both the beautiful pigmentation of phenazine-producing cultures and the high degree of variability in phenazine production among isolates, conditions, and even repeat experiments. Motivated by an interest in controlling phenazine biosynthesis, they have identified many of the factors that affect the regulation of this process. Phenazine production is controlled by complex regulatory networks. The variability of phenazine production can be explained in part by the effects of environmental conditions on these networks and by strain-specific differences in these networks. In this chapter, we describe the components of a common regulatory cascade that is represented in many phenazine-producing pseudomonads. Membrane sensor proteins and two component sensors control the activity of downstream regulators such as quorum sensing systems and RNA-binding proteins and small RNAs; these cytoplasmic regulators then control the production of phenazine biosynthetic proteins. We highlight examples from specific strains and cases where the mechanistic links may vary among them. We also discuss environmental parameters that have been shown to affect phenazine biosynthesis and compare their effects in different isolates. Ongoing work will further elaborate the details of the environmental sensing and regulatory responses that control production of these dramatically colored compounds. New findings have the potential to support enhanced application of phenazine-producing strains in agriculture, where they promote crop health, and the treatment of infections in which phenazines contribute to bacterial pathogenicity.

Keywords

Quorum Sense Quorum Sense System Regulatory Cascade Pseudomonas Quinolone Signal Strain PA14 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdou L, Chou HT, Haas D et al (2011) Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol 193(11):2784–2792PubMedGoogle Scholar
  2. Ahuja EG, Janning P, Mentel M et al (2008) PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J Am Chem Soc 130(50):17053–17061PubMedGoogle Scholar
  3. Argaman L, Elgrably-Weiss M, Hershko T et al (2012) RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci USA 109(12):4621–4626PubMedGoogle Scholar
  4. Balasubramanian D, Schneper L, Kumari H et al (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucl Acids Res 41(1):1–20PubMedGoogle Scholar
  5. Ballard RW, Palleroni NJ, Doudoroff M et al (1970) Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J Gen Microbiol 60(2):199–214PubMedGoogle Scholar
  6. Beatson SA, Whitchurch CB, Sargent JL et al (2002) Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 184(13):3605–3613PubMedGoogle Scholar
  7. Behrends V, Ebbels TM, Williams HD et al (2009) Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl Environ Microbiol 75(8):2453–2463PubMedGoogle Scholar
  8. Birkofer L (1947) Das Verhalten der Diazoketone bei der katalytischen Hydrierung; eine neue Synthese des Threonins. Chem Berichte 80(1):83–94Google Scholar
  9. Blumer C, Heeb S, Pessi G et al (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96(24):14073–14078PubMedGoogle Scholar
  10. Bordi C, Lamy MC, Ventre I et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 76(6):1427–1443PubMedGoogle Scholar
  11. Bourret RB, Silversmith RE (2010) Two-component signal transduction. Curr Opin Microbiol 13(2):113–115PubMedGoogle Scholar
  12. Burrowes E, Abbas A, O’Neill A et al (2005) Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Res Microbiol 156(1):7–16PubMedGoogle Scholar
  13. Burrowes E, Baysse C, Adams C et al (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152(Pt 2):405–418PubMedGoogle Scholar
  14. Burton MO, Eagles BA, Campbell JJ (1947) The amino acid requirements for pyocyanin production. Can J Res 25(4):121–128PubMedGoogle Scholar
  15. Byng GS, Eustice DC, Jensen RA (1979) Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J Bacteriol 138(3):846–852PubMedGoogle Scholar
  16. Caldwell CC, Chen Y, Goetzmann HS et al (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175(6):2473–2488PubMedGoogle Scholar
  17. Chancey ST, Wood DW, Pierson LS 3rd (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65(6):2294–2299PubMedGoogle Scholar
  18. Chin-A-Woeng TFC, van den Broek D, de Voer G et al (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14(8):969–979PubMedGoogle Scholar
  19. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenzines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523Google Scholar
  20. Choi EJ, Kwon HC, Ham J et al (2009) 6-Hydroxymethyl-1-phenazine-carboxamide and 1,6-phenazinedimethanol from a marine bacterium, Brevibacterium sp. KMD 003, associated with marine purple vase sponge. J Antibiot (Tokyo) 62(11):621–624Google Scholar
  21. Chugani SA, Whiteley M, Lee KM et al (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98(5):2752–2757PubMedGoogle Scholar
  22. Clemo GR, Daglish AF (1948) Structure of the pigment of Chromobacterium iodinum. Nature 162(4124):776PubMedGoogle Scholar
  23. De Maeyer K, D’Aes J, Hua GK et al (2011) N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157(Pt 2):459–472PubMedGoogle Scholar
  24. Deziel E, Lepine F, Milot S et al (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101(5):1339–1344PubMedGoogle Scholar
  25. Dieppois G, Ducret V, Caille O et al (2012) The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS ONE 7(5):e38148PubMedGoogle Scholar
  26. Dietrich LE, Price-Whelan A, Petersen A et al (2006) The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61(5):1308–1321PubMedGoogle Scholar
  27. Dietrich LE, Okegbe C, Price-Whelan A et al (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol. doi: 10.1128/JB.02273-12 Google Scholar
  28. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96PubMedGoogle Scholar
  29. Egland KA, Greenberg EP (1999) Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol Microbiol 31(4):1197–1204PubMedGoogle Scholar
  30. Erickson DL, Lines JL, Pesci EC et al (2004) Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 72(10):5638–5645PubMedGoogle Scholar
  31. Farrow JM 3rd, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189(9):3425–3433PubMedGoogle Scholar
  32. Farrow JM 3rd, Sund ZM, Ellison ML et al (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190(21):7043–7051PubMedGoogle Scholar
  33. Fordos MJ (1859) Recherches sur la matière colorante des suppurations bleues: pyocyanine. Rec Trav Soc d’Émul Sci Pharm 3:30Google Scholar
  34. Gallagher LA, McKnight SL, Kuznetsova MS et al (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184(23):6472–6480PubMedGoogle Scholar
  35. Gebhardt K, Schimana J, Krastel P et al (2002) Endophenazines A-D, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 55(9):794–800Google Scholar
  36. Gerber NN (1967) Phenazines, phenoxazinones, and dioxopiperazines from Streptomyces thioluteus. J Org Chem 32(12):4055–4057PubMedGoogle Scholar
  37. Gerber NN, Lechevalier MP (1964) Phenazines and phenoxazinones from Waksmania aerata sp. nov. and Pseudomonas iodina. Biochemistry 3:598–602PubMedGoogle Scholar
  38. Gerber NN, Lechevalier MP (1965) 1,6-Phenazinediol-5-oxide from microorganisms. Biochemistry 4:176–180PubMedGoogle Scholar
  39. Gessard C (1894) On the blue and green coloration that appears on bandages. Rev Inf Dis 6:S775–S776Google Scholar
  40. Giddens SR, Feng Y, Mahanty HK (2002) Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol Microbiol 45(3):769–783PubMedGoogle Scholar
  41. Girard G, Barends S, Rigali S et al (2006a) Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. J Bacteriol 188(23):8283–8293PubMedGoogle Scholar
  42. Girard G, van Rij ET, Lugtenberg BJJ et al (2006b) Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152(Pt 1):43–58PubMedGoogle Scholar
  43. Goodman AL, Kulasekara B, Rietsch A et al (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7(5):745–754PubMedGoogle Scholar
  44. Goodman AL, Merighi M, Hyodo M et al (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes and Dev 23(2):249–259PubMedGoogle Scholar
  45. Haagen Y, Gluck K, Fay K et al (2006) A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 7(12):2016–2027PubMedGoogle Scholar
  46. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319PubMedGoogle Scholar
  47. Hansford GS, Holliman FG, Herbert RB (1972) Pigments of Pseudomonas species. IV. In vitro and in vivo conversion of 5-methylphenazinium-1-carboxylate into aeruginosin A. J Chem Soc Perkin Trans I 1:103–105Google Scholar
  48. Hassett DJ, Schweizer HP, Ohman DE (1995) Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177(22):6330–6337PubMedGoogle Scholar
  49. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14(12):1351–1363PubMedGoogle Scholar
  50. Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184(4):1046–1056PubMedGoogle Scholar
  51. Hendrickson EL, Plotnikova J, Mahajan-Miklos S (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 183(24):7126–7134PubMedGoogle Scholar
  52. Herbert RB, Holliman FG (1969) Pigments of Pseudomonas species. II. Structure of aeruginosin B. J Chem Soc Perkin 1(18):2517–2520Google Scholar
  53. Heurlier K, Denervaud V, Pessi G et al (2003) Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185(7):2227–2235PubMedGoogle Scholar
  54. Heurlier K, Williams F, Heeb S et al (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186(10):2936–2945PubMedGoogle Scholar
  55. Holliman FG (1969) Pigments of Pseudomonas species. I. Structure and synthesis of aeruginosin A. J Chem Soc Perkin 1(18):2514–2516Google Scholar
  56. Hsu JL, Chen HC, Peng HL et al (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 283(15):9933–9944PubMedGoogle Scholar
  57. Huang J, Xu Y, Zhang H, Li Y, Huang X, Ren B, Zhang X (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 75(20):6568–6580PubMedGoogle Scholar
  58. Huang J, Sonnleitner E, Ren B et al (2012) Catabolite repression control of pyocyanin biosynthesis at an intersection of primary and secondary metabolism in Pseudomonas aeruginosa. Appl Environ Microbiol 78(14):5016–5020PubMedGoogle Scholar
  59. Hunter RC, Klepac-Ceraj V, Lorenzi MM et al (2012) Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 47(6):738–745PubMedGoogle Scholar
  60. Johnson LE, Dietz A (1969) Lomofungin, a new antibiotic produced by Streptomyces lomondensis sp. n. Appl Microbiol 17(5):755–759PubMedGoogle Scholar
  61. Juhas M, Wiehlmann L, Huber B et al (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150(Pt 4):831–841PubMedGoogle Scholar
  62. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102(47):17136–17141PubMedGoogle Scholar
  63. Kay E, Humair B, Denervaud V et al (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188(16):6026–6033PubMedGoogle Scholar
  64. Khan SR, Mavrodi DV, Jog GJ et al (2005) Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187(18):6517–6527PubMedGoogle Scholar
  65. Khan SR, Herman J, Krank J et al (2007) N-(3-hydroxyhexanoyl)-l-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30-84. Appl Environ Microbiol 73(22):7443–7455PubMedGoogle Scholar
  66. Kojic M, Venturi V (2001) Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 183(12):3712–3720PubMedGoogle Scholar
  67. Lapouge K, Sineva E, Lindell M et al (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66(2):341–356PubMedGoogle Scholar
  68. Lasseur A (1911) These de Faculte des Sciences de l’Universite de NancyGoogle Scholar
  69. Lau GW, Ran H, Kong F et al (2004) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72(7):4275–4278Google Scholar
  70. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104(3):1663–1686PubMedGoogle Scholar
  71. Lechevalier H, Lechevalier MP (1965) Classification of aerobic actinomycetes based on their morphology and their chemical composition. Ann Inst Pasteur (Paris) 108(5):662–673Google Scholar
  72. Ledgham F, Ventre I, Soscia C et al (2003) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48(1):199–210PubMedGoogle Scholar
  73. Lee JH, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59(2):602–609PubMedGoogle Scholar
  74. Liang H, Li L, Kong W et al (2009) Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa. FEMS Microbiol Lett 293(2):196–204PubMedGoogle Scholar
  75. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445PubMedGoogle Scholar
  76. Mavrodi DV, Peever TL, Mavrodi OV et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879PubMedGoogle Scholar
  77. Mavrodi DV, Parejko JA, Mavrodi OV et al (2012) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol:doi. doi: 10.1111/j.1462-2920.2012.02846.x Google Scholar
  78. McLaughlin HP, Caly DL, McCarthy Y et al (2012) An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa. PLoS ONE 7(8):e42205PubMedGoogle Scholar
  79. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1):123–142PubMedGoogle Scholar
  80. Mentel M, Ahuja EG, Mavrodi DV et al (2009) Of two make one: the biosynthesis of phenazines. ChemBioChem 10:2295–2304PubMedGoogle Scholar
  81. Oglesby AG, Farrow JM 3rd, Lee JH et al (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283(23):15558–15567PubMedGoogle Scholar
  82. Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189(22):8079–8087PubMedGoogle Scholar
  83. Pearson JP, Gray KM, Passador L et al (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91(1):197–201PubMedGoogle Scholar
  84. Pearson JP, Passador L, Iglewski BH et al (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92(5):1490–1494PubMedGoogle Scholar
  85. Pesci EC, Milbank JB, Pearson JP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96(20):11229–11234PubMedGoogle Scholar
  86. Pessi G, Williams F, Hindle Z, Heurlier K et al (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183(22):6676–6683PubMedGoogle Scholar
  87. Petrova OE, Sauer K (2010) The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 192(20):5275–5288PubMedGoogle Scholar
  88. Pierson LS 3rd, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670PubMedGoogle Scholar
  89. Pierson LS 3rd, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176(13):3966–3974PubMedGoogle Scholar
  90. Ramos CG, Sousa SA, Grilo AM et al (2010) The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr is required for stress resistance and virulence. Microb Pathog 48(5):168–177PubMedGoogle Scholar
  91. Rampioni G, Schuster M, Greenberg EP et al (2009) Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett 301(2):210–217PubMedGoogle Scholar
  92. Recinos DA, Sekedat MD, Hernandez A et al (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci USA 109:19420–19425PubMedGoogle Scholar
  93. Reimmann C, Beyeler M, Latifi A et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24(2):309–319PubMedGoogle Scholar
  94. Reimmann C, Valverde C, Kay E et al (2005) Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187(1):276–285PubMedGoogle Scholar
  95. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34(5):658–684PubMedGoogle Scholar
  96. Rusman Y, Oppegard LM, Hiasa H et al (2013) Solphenazines A-F, glycosylated phenazines from Streptomyces sp. strain DL-93. J Nat Prod 76(1):91–96PubMedGoogle Scholar
  97. Saleh O, Flinspach K, Westrich L et al (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8:501–513PubMedGoogle Scholar
  98. Schertzer JW, Brown SA, Whiteley M (2010) Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77(6):1527–1538PubMedGoogle Scholar
  99. Schoental R (1941) The nature of the antibacterial agents present in Pseudomonas pyocyanea cultures. Brit J Exp Pathol 22(3):37–147Google Scholar
  100. Schroeter J (1872) Ueber einige durch Bacterien gebildete Pigmente. Beiträge zur Biologie der Pflanzen Band 1(Zweites Heft):109–126Google Scholar
  101. Schuster M, Hawkins AC, Harwood CS et al (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51(4):973–985PubMedGoogle Scholar
  102. Seeger K, Flinspach K, Haug-Schifferdecker E et al (2011) The biosynthetic genes for prenylated phenazines are located at two different chromosomal loci of Streptomyces cinnamonensis DSM 1042. Microb Biotechnol 4(2):252–262PubMedGoogle Scholar
  103. Siehnel R, Traxler B, An DD et al (2010) A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107(17):7916–7921PubMedGoogle Scholar
  104. Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 43(5):794–800PubMedGoogle Scholar
  105. Sonnleitner E, Haas D (2011) Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91(1):63–79PubMedGoogle Scholar
  106. Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106(51):21866–21871PubMedGoogle Scholar
  107. Sonnleitner E, Gonzalez N, Sorger-Domenigg T et al (2011) The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 80(4):868–885PubMedGoogle Scholar
  108. Suh SJ, Silo-Suh L, Woods DE et al (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181(13):3890–3897PubMedGoogle Scholar
  109. Tanabe I, Obayashi A (1971) Cultivation of Brevibacterium stationis var. iodiniofaciens and its iodinin production. Memoirs of the Faculty of Agriculture, Kagoshima University 8(1):373–389Google Scholar
  110. Thompson LS, Webb JS, Rice SA et al (2003) The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 220(2):187–195PubMedGoogle Scholar
  111. Tipton CD, Rinehart KL Jr (1970) Lomofungin. I. Degradative studies of a new phenazine antibiotic. J Am Chem Soc 92(5):1425–1426PubMedGoogle Scholar
  112. Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27:211–275PubMedGoogle Scholar
  113. Valentini M, Lapouge K (2012) Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C(4) -dicarboxylates depending on succinate concentration. Environ Microbiol. doi: 10.1111/1462-2920.12056 PubMedGoogle Scholar
  114. Valverde C, Heeb S, Keel C et al (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50(4):1361–1379PubMedGoogle Scholar
  115. van den Broek D, Chin-A-Woeng TFC, Eijkemans K et al (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant Microbe Interact 16(11):1003–1012PubMedGoogle Scholar
  116. van Rij ET, Wesselink M, Chin-A-Woeng TFC et al (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17(5):557–566PubMedGoogle Scholar
  117. Ventre I, Goodman AL, Vallet-Gely I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103(1):171–176PubMedGoogle Scholar
  118. Vincent F, Round A, Reynaud A et al (2010) Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol 12(6):1775–1786PubMedGoogle Scholar
  119. Von Saltza MH, Last JA, Stapleton PG et al (1969) Cyanomycin, its identity with pyocyanine. J Antibiot (Tokyo) 22(2):49–54Google Scholar
  120. Wagner VE, Bushnell D, Passador L et al (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185(7):2080–2095PubMedGoogle Scholar
  121. Wang D, Yu JM, Pierson LS 3rd et al (2012a) Differential regulation of phenazine biosynthesis by RpeA and RpeB in Pseudomonas chlororaphis 30-84. Microbiology 158(Pt 7):1745–1757PubMedGoogle Scholar
  122. Wang G, Huang X, Li S et al (2012b) The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 194(10):2443–2457PubMedGoogle Scholar
  123. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96(24):13904–13909PubMedGoogle Scholar
  124. Wilderman PJ, Sowa NA, FitzGerald DJ et al (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101(26):9792–9797PubMedGoogle Scholar
  125. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191PubMedGoogle Scholar
  126. Wood DW, Pierson LS 3rd (1996) The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168(1):49–53PubMedGoogle Scholar
  127. Workentine ML, Chang L, Ceri H et al (2009) The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol Lett 292(1):50–56PubMedGoogle Scholar
  128. Wurtzel O, Yoder-Himes DR, Han K et al (2012) The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog 8(9):e1002945PubMedGoogle Scholar
  129. Xiao G, Deziel E, He J et al (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62(6):1689–1699PubMedGoogle Scholar
  130. Xu H, Lin W, Xia H et al (2005) Influence of ptsP gene on pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 253(1):103–109PubMedGoogle Scholar
  131. Yu S, Jensen V, Seeliger J et al (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48(43):10298–10307PubMedGoogle Scholar
  132. Zhang X, Wang S, Geng H et al (2005) Differential regulation of rsmA gene on biosynthesis of pyoluteorin and phenazine-1-carboxylic acid in Pseudomonas sp. M18. World J Microbiol Biotechnol 21(6–7):883–889Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Sakhtah
    • 1
  • A. Price-Whelan
    • 2
  • L. E. P. Dietrich
    • 1
  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Department of Pharmacology and Systems TherapeuticsMount Sinai School of MedicineNew YorkUSA

Personalised recommendations